10 explain the cellular functions that occur when antibiotics attack a bacteria cell. Ideas

Below is information and knowledge on the topic explain the cellular functions that occur when antibiotics attack a bacteria cell. gather and compiled by the show.vn team. Along with other related topics like: how will the antibiotic treat the bacterial infections?, explain the cellular functions that occur when antibiotics attack a bacteria cell. quizlet, Describe the five cellular targets of antibiotics Quizlet, what are key markers for the identification of bacteria?, How does penicillin kill bacteria, Explain how antibiotics could attack bacteria but not attack the cells in a human body, What is antibiotic resistance, Antibiotics that kill bacteria are called.

iotics kill bacteria: from targets to networks

1. Walsh C. Antibiotics: actions, origins, resistance. ASM Press; Washington, D.C: 2003. [Google Scholar]

2. Fleming A. On antibacterial action of culture of penicillium, with special reference to their use in isolation of B. influenzae. British Journal of Experimental Pathology. 1929;10:226–236. [PubMed] [Google Scholar]

3. Taubes G. The bacteria fight back. Science. 2008;321:356–61. [PubMed] [Google Scholar]

4. Drlica K, Malik M, Kerns RJ, Zhao X. Quinolone-mediated bacterial death. Antimicrob Agents Chemother. 2008;52:385–92. [PMC free article] [PubMed] [Google Scholar]

5. Floss HG, Yu TW. Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev. 2005;105:621–32. [PubMed] [Google Scholar]

6• . Tomasz A. The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol. 1979;33:113–37. This seminal review of beta-lactam-mediated cell death discusses the intricacies of killing by various members of this antibiotic class in terms of the specific drug-inhibited protein targets and their related cell wall maintenance functions. [PubMed] [Google Scholar]

7. Vakulenko SB, Mobashery S. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev. 2003;16:430–50. [PMC free article] [PubMed] [Google Scholar]

8• . Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810. Reveals that treatment of Gram-positive and Gram-negative bacteria with lethal levels of bactericidal antibiotics induces the formation of hydroxyl radicals via a common mechanism involving drug-induced changes in NADH consumption and central metabolism, notably the tricarboxylic acid cycle. [PubMed] [Google Scholar]

9•. Dwyer DJ, Kohanski MA, Hayete B, Collins JJ. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol. 2007;3:91. Describes the physiological responses of E. coli following inhibition of DNA gyrase by a fluoroquinolone antibiotic and a peptide toxin, include activation of the superoxide stress response and increased iron-sulfur cluster synthesis. Ultimately, these physiological changes are shown to result in hydroxyl radical production, which contribute to cell death. [PMC free article] [PubMed] [Google Scholar]

10• . Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell. 2008;135:679–90. Demonstrates that systems which facilitate membrane protein traffic are central to aminoglycoside-induced oxidative stress and cell death. This occurs by signaling through the redox- and the envelope stress-responsive two-component systems. These two-component systems are also shown to have a general role in bactericidal antibiotic-mediated oxidative stress and cell death, expanding our understanding of the common mechanism of killing induced by bactericidal antibiotics. [PMC free article] [PubMed] [Google Scholar]

11. Espeli O, Marians KJ. Untangling intracellular DNA topology. Mol Microbiol. 2004;52:925–31. [PubMed] [Google Scholar]

12. Drlica K, Snyder M. Superhelical Escherichia coli DNA: relaxation by coumermycin. J Mol Biol. 1978;120:145–54. [PubMed] [Google Scholar]

13. Gellert M, Mizuuchi K, O’Dea MH, Nash HA. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A. 1976;73:3872–6. [PMC free article] [PubMed] [Google Scholar]

14• . Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci U S A. 1977;74:4767–71. References 14 and 15 discuss the results of complementary in vivo and in vitro studies that characterized the genetic locus (nalA, later gyrA) and the basic mechanism of quinolone antibiotic action (prevention of DNA duplex strand rejoining yielding double-stranded DNA breaks), while postulating on the composition and energetic requirements of DNA gyrase activity. [PMC free article] [PubMed] [Google Scholar]

15• . Gellert M, Mizuuchi K, O’Dea MH, Itoh T, Tomizawa JI. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci U S A. 1977;74:4772–6. References 14 and 15 discuss the results of complementary in vivo and in vitro studies that characterized the genetic locus (nalA, later gyrA) and the basic mechanism of quinolone antibiotic action (prevention of DNA duplex strand rejoining yielding double-stranded DNA breaks), while postulating on the composition and energetic requirements of DNA gyrase activity. [PMC free article] [PubMed] [Google Scholar]

16. Hooper DC, Rubinstein E. Quinolone antimicrobial agents. ASM Press; Washington, D.C: 2003. [Google Scholar]

17. Rubinstein E. History of quinolones and their side effects. Chemotherapy. 2001;47(Suppl 3):3–8. discussion 44–8. [PubMed] [Google Scholar]

18. Lu T, et al. Enhancement of fluoroquinolone activity by C-8 halogen and methoxy moieties: action against a gyrase resistance mutant of Mycobacterium smegmatis and a gyrase-topoisomerase IV double mutant of Staphylococcus aureus. Antimicrob Agents Chemother. 2001;45:2703–9. [PMC free article] [PubMed] [Google Scholar]

19• . Chen CR, Malik M, Snyder M, Drlica K. DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol. 1996;258:627–37. Identifies topoisomerase IV as a second target of fluoroquinolone antibiotics in Gram-negative bacteria, while characterizing subtle yet critical differences in the mechanism of killing by various quinolone drugs. [PubMed] [Google Scholar]

20. Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev. 1997;61:377–92. [PMC free article] [PubMed] [Google Scholar]

21. Munoz R, De La Campa AG. ParC subunit of DNA topoisomerase IV of Streptococcus pneumoniae is a primary target of fluoroquinolones and cooperates with DNA gyrase A subunit in forming resistance phenotype. Antimicrob Agents Chemother. 1996;40:2252–7. [PMC free article] [PubMed] [Google Scholar]

22. Belland RJ, Morrison SG, Ison C, Huang WM. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol Microbiol. 1994;14:371–80. [PubMed] [Google Scholar]

23. Critchlow SE, Maxwell A. DNA cleavage is not required for the binding of quinolone drugs to the DNA gyrase-DNA complex. Biochemistry. 1996;35:7387–93. [PubMed] [Google Scholar]

24. Marians KJ, Hiasa H. Mechanism of quinolone action. A drug-induced structural perturbation of the DNA precedes strand cleavage by topoisomerase IV. J Biol Chem. 1997;272:9401–9. [PubMed] [Google Scholar]

25• . Kampranis SC, Maxwell A. The DNA gyrase-quinolone complex. ATP hydrolysis and the mechanism of DNA cleavage. J Biol Chem. 1998;273:22615–26. Reveals that quinolone antibiotic binding to the gyrase-DNA complex occurs before DNA strand breakage and that DNA cleavage can occur, albeit at a slower rate, in the presence of the drug molecule based on the results of ATP hydrolysis and DNA cleavage assays. [PubMed] [Google Scholar]

26. Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother. 1990;34:1271–2. [PMC free article] [PubMed] [Google Scholar]

27. Morais Cabral JH, et al. Crystal structure of the breakage-reunion domain of DNA gyrase. Nature. 1997;388:903–6. [PubMed] [Google Scholar]

28. Heddle J, Maxwell A. Quinolone-binding pocket of DNA gyrase: role of GyrB. Antimicrob Agents Chemother. 2002;46:1805–15. [PMC free article] [PubMed] [Google Scholar]

29. Goss WA, Deitz WH, Cook TM. Mechanism of Action of Nalidixic Acid on Escherichia Coli. Ii. Inhibition of Deoxyribonucleic Acid Synthesis. J Bacteriol. 1965;89:1068–74. [PMC free article] [PubMed] [Google Scholar]

30. Snyder M, Drlica K. DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid. J Mol Biol. 1979;131:287–302. [PubMed] [Google Scholar]

31. Cox MM, et al. The importance of repairing stalled replication forks. Nature. 2000;404:37–41. [PubMed] [Google Scholar]

32. Courcelle J, Hanawalt PC. RecA-dependent recovery of arrested DNA replication forks. Annu Rev Genet. 2003;37:611–46. [PubMed] [Google Scholar]

33. Howard BM, Pinney RJ, Smith JT. Function of the SOS process in repair of DNA damage induced by modern 4-quinolones. J Pharm Pharmacol. 1993;45:658–62. [PubMed] [Google Scholar]

34. Cirz RT, et al. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol. 2005;3:e176. [PMC free article] [PubMed] [Google Scholar]

Read More:  10 what factor was most crucial to the survival of the remaining indigenous people of latin america? Ideas

35. Guerin E, et al. The SOS response controls integron recombination. Science. 2009;324:1034. [PubMed] [Google Scholar]

36. Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 2004;427:72–4. [PubMed] [Google Scholar]

37. Lewin CS, Howard BM, Smith JT. Protein- and RNA-synthesis independent bactericidal activity of ciprofloxacin that involves the A subunit of DNA gyrase. J Med Microbiol. 1991;34:19–22. [PubMed] [Google Scholar]

38. Wang X, Zhao X, Malik M, Drlica K. Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. J Antimicrob Chemother. 2010;65:520–4. [PMC free article] [PubMed] [Google Scholar]

39. Kolodkin-Gal I, Sat B, Keshet A, Engelberg-Kulka H. The communication factor EDF and the toxin-antitoxin module mazEF determine the mode of action of antibiotics. PLoS Biol. 2008;6:e319. [PMC free article] [PubMed] [Google Scholar]

40. Dukan S, et al. Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci U S A. 2000;97:5746–9. [PMC free article] [PubMed] [Google Scholar]

41. Hartmann G, Honikel KO, Knusel F, Nuesch J. The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim Biophys Acta. 1967;145:843–4. [PubMed] [Google Scholar]

42• . Campbell EA, et al. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell. 2001;104:901–12. Describes the intricacies of binding between the rifamycin antibiotic, rifampicin, and a DNA-engaged RNA polymerase, while providing a detailed mechanism for rifamycin action (blockage of the nacent RNA transcript exit channel) based primarially on the results of x-ray crystallography studies. [PubMed] [Google Scholar]

43. Naryshkina T, Mustaev A, Darst SA, Severinov K. The beta subunit of Escherichia coli RNA polymerase is not required for interaction with initiating nucleotide but is necessary for interaction with rifampicin. J Biol Chem. 2001;276:13308–13. [PubMed] [Google Scholar]

44. Chamberlin M, Losick R Cold Spring Harbor Laboratory. RNA polymerase. Cold Spring Harbor Laboratory; Cold Spring Harbor, N. Y: 1976. [Google Scholar]

45. McClure WR, Cech CL. On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem. 1978;253:8949–56. [PubMed] [Google Scholar]

46. Artsimovitch I, Chu C, Lynch AS, Landick R. A new class of bacterial RNA polymerase inhibitor affects nucleotide addition. Science. 2003;302:650–4. [PubMed] [Google Scholar]

47. Sensi P, Margalith P, Timbal MT. Rifomycin, a new antibiotic; preliminary report. Farmaco Sci. 1959;14:146–7. [PubMed] [Google Scholar]

48. Sensi P. History of the development of rifampin. Rev Infect Dis. 1983;5 (Suppl 3):S402–6. [PubMed] [Google Scholar]

49. Wehrli W. Rifampin: mechanisms of action and resistance. Rev Infect Dis. 1983;5 (Suppl 3):S407–11. [PubMed] [Google Scholar]

50. Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40:327–41. [PubMed] [Google Scholar]

51. Hobby GL, Lenert TF. The action of rifampin alone and in combination with other antituberculous drugs. Am Rev Respir Dis. 1970;102:462–5. [PubMed] [Google Scholar]

52• . Kono Y. Oxygen Enhancement of bactericidal activity of rifamycin SV on Escherichia coli and aerobic oxidation of rifamycin SV to rifamycin S catalyzed by manganous ions: the role of superoxide. J Biochem (Tokyo) 1982;91:381–95. Reveals that redox cycling of rifamycin drug molecules results in the formation of reactive oxygen species, and that reactive oxygen species generation contributes to the bactericidal activity of the antibiotic. [PubMed] [Google Scholar]

53. Scrutton MC. Divalent metal ion catalysis of the oxidation of rifamycin SV to rifamycin S. FEBS Lett. 1977;78:216–20. [PubMed] [Google Scholar]

54. Bugg TD, Walsh CT. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep. 1992;9:199–215. [PubMed] [Google Scholar]

55. Holtje JV. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev. 1998;62:181–203. [PMC free article] [PubMed] [Google Scholar]

56. Park JT, Uehara T. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan) Microbiol Mol Biol Rev. 2008;72:211–27. table of contents. [PMC free article] [PubMed] [Google Scholar]

57• . Wise EM, Jr, Park JT. Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc Natl Acad Sci U S A. 1965;54:75–81. References 56 and 57 describe the results of complementary studies first revealing that inhibition of cell wall biosynthesis by beta-lactam antibiotics is due to catalytic site modification of transpeptidase and carboxypeptidase enzymes (later penicillin binding proteins), which misrecognize the drug molecule as a peptidoglycan substrate mimic. [PMC free article] [PubMed] [Google Scholar]

58• . Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A. 1965;54:1133–41. References 56 and 57 describe the results of complementary studies first revealing that inhibition of cell wall biosynthesis by beta-lactam antibiotics is due to catalytic site modification of transpeptidase and carboxypeptidase enzymes (later penicillin binding proteins), which misrecognize the drug molecule as a peptidoglycan substrate mimic. [PMC free article] [PubMed] [Google Scholar]

59. Waxman DJ, Yocum RR, Strominger JL. Penicillins and cephalosporins are active site-directed acylating agents: evidence in support of the substrate analogue hypothesis. Philos Trans R Soc Lond B Biol Sci. 1980;289:257–71. [PubMed] [Google Scholar]

60. Josephine HR, Kumar I, Pratt RF. The perfect penicillin? Inhibition of a bacterial DD-peptidase by peptidoglycan-mimetic beta-lactams. J Am Chem Soc. 2004;126:8122–3. [PubMed] [Google Scholar]

61. Kahne D, Leimkuhler C, Lu W, Walsh C. Glycopeptide and lipoglycopeptide antibiotics. Chem Rev. 2005;105:425–48. [PubMed] [Google Scholar]

62. Cooper MA, Williams DH. Binding of glycopeptide antibiotics to a model of a vancomycin-resistant bacterium. Chem Biol. 1999;6:891–9. [PubMed] [Google Scholar]

63. Ge M, et al. Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science. 1999;284:507–11. [PubMed] [Google Scholar]

64• . Tomasz A, Albino A, Zanati E. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature. 1970;227:138–40. Demonstrates for the first time that beta-lactam-induced cell lysis is regulated by the activity of murein hydrolases. Also reveals that wild-type pneumococci and lysis-defective, murein hydrolase activity-deficient pneumococci are equally sensitive to beta-lactam treatment despite starkly different phenotypic effects. [PubMed] [Google Scholar]

65• . Heidrich C, Ursinus A, Berger J, Schwarz H, Holtje JV. Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J Bacteriol. 2002;184:6093–9. Reveals that murein hydrolases in E. coli are important for cell separation following cell division and demonstrates that the deletion of multiple murein hydrolase enzymes delays beta-lactam-induced lysis. [PMC free article] [PubMed] [Google Scholar]

66. Uehara T, Dinh T, Bernhardt TG. LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol. 2009;191:5094–107. [PMC free article] [PubMed] [Google Scholar]

67• . Moreillon P, Markiewicz Z, Nachman S, Tomasz A. Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob Agents Chemother. 1990;34:33–9. Describes the characterization of the cid system in pneumococci, which contributes to killing by beta-lactams independently of murein hydrolase (autolysin) activity. [PMC free article] [PubMed] [Google Scholar]

68. Hoch JA. Two-component and phosphorelay signal transduction. Curr Opin Microbiol. 2000;3:165–70. [PubMed] [Google Scholar]

69. Novak R, Henriques B, Charpentier E, Normark S, Tuomanen E. Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature. 1999;399:590–3. [PubMed] [Google Scholar]

70. Novak R, Charpentier E, Braun JS, Tuomanen E. Signal transduction by a death signal peptide: uncovering the mechanism of bacterial killing by penicillin. Mol Cell. 2000;5:49–57. [PubMed] [Google Scholar]

71. Brunskill EW, Bayles KW. Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. J Bacteriol. 1996;178:611–8. [PMC free article] [PubMed] [Google Scholar]

72. Brunskill EW, Bayles KW. Identification of LytSR-regulated genes from Staphylococcus aureus. J Bacteriol. 1996;178:5810–2. [PMC free article] [PubMed] [Google Scholar]

73. Groicher KH, Firek BA, Fujimoto DF, Bayles KW. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol. 2000;182:1794–801. [PMC free article] [PubMed] [Google Scholar]

74• . Rice KC, et al. The Staphylococcus aureus cidAB operon: evaluation of its role in regulation of murein hydrolase activity and penicillin tolerance. J Bacteriol. 2003;185:2635–43. Suggests that CidAB and LrgAB function as a holin/anti-holin-like system that regulates that activity of murein hydrolases, and subsequently, tolerance to beta-lactam treatment. [PMC free article] [PubMed] [Google Scholar]

75. Bayles KW. The biological role of death and lysis in biofilm development. Nat Rev Microbiol. 2007;5:721–6. [PubMed] [Google Scholar]

76. Spratt BG. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A. 1975;72:2999–3003. [PMC free article] [PubMed] [Google Scholar]

77. Kitano K, Tomasz A. Triggering of autolytic cell wall degradation in Escherichia coli by beta-lactam antibiotics. Antimicrob Agents Chemother. 1979;16:838–48. [PMC free article] [PubMed] [Google Scholar]

78. Lewin CS, Howard BM, Ratcliffe NT, Smith JT. 4-quinolones and the SOS response. J Med Microbiol. 1989;29:139–44. [PubMed] [Google Scholar]

79. Bi E, Lutkenhaus J. Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J Bacteriol. 1993;175:1118–25. [PMC free article] [PubMed] [Google Scholar]

80. Goehring NW, Beckwith J. Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol. 2005;15:R514–26. [PubMed] [Google Scholar]

81• . Miller C, et al. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science. 2004;305:1629–31. Describes observations made in E. coli that β-lactam antibiotics can uniquely stimulate expression of the SOS stress response via activation of the DpiBA two-component signal transduction system, and suggests that SOS-mediated arrest of cell division may be a protective reaction to transpeptidase inactivation by these drugs. [PubMed] [Google Scholar]

Read More:  10 which statement accurately describes the difference between a traditional modem and an isdn line? Ideas

82. Varma A, Young KD. FtsZ collaborates with penicillin binding proteins to generate bacterial cell shape in Escherichia coli. J Bacteriol. 2004;186:6768–74. [PMC free article] [PubMed] [Google Scholar]

83. Vincent S, Glauner B, Gutmann L. Lytic effect of two fluoroquinolones, ofloxacin and pefloxacin, on Escherichia coli W7 and its consequences on peptidoglycan composition. Antimicrob Agents Chemother. 1991;35:1381–5. [PMC free article] [PubMed] [Google Scholar]

84. Garrett RA. The ribosome: structure, function, antibiotics, and cellular interactions. ASM Press; Washington, DC: 2000. [Google Scholar]

85. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000;289:920–30. [PubMed] [Google Scholar]

86. Katz L, Ashley GW. Translation and protein synthesis: macrolides. Chem Rev. 2005;105:499–528. [PubMed] [Google Scholar]

87. Mukhtar TA, Wright GD. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev. 2005;105:529–42. [PubMed] [Google Scholar]

88. Patel U, et al. Oxazolidinones mechanism of action: inhibition of the first peptide bond formation. J Biol Chem. 2001;276:37199–205. [PubMed] [Google Scholar]

89. Vannuffel P, Cocito C. Mechanism of action of streptogramins and macrolides. Drugs. 1996;51 (Suppl 1):20–30. [PubMed] [Google Scholar]

90. Menninger JR, Otto DP. Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes. Antimicrob Agents Chemother. 1982;21:811–8. [PMC free article] [PubMed] [Google Scholar]

91• . Tenson T, Lovmar M, Ehrenberg M. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol. 2003;330:1005–14. Reveals that 50S ribosomal subunit binding drugs of the macrolide, lincosamide and streptogramin B classes allow for elongation of distinct amino acid chain lengths during translation, which are determined by the fit between drug molecule and the peptidyltransferase center of the ribosome, before forcing dissociation of the nacent peptidyl-tRNA. [PubMed] [Google Scholar]

92. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65:232–60. second page, table of contents. [PMC free article] [PubMed] [Google Scholar]

94. Weisblum B, Davies J. Antibiotic inhibitors of the bacterial ribosome. Bacteriol Rev. 1968;32:493–528. [PMC free article] [PubMed] [Google Scholar]

95. Hancock RE. Aminoglycoside uptake and mode of action–with special reference to streptomycin and gentamicin. I. Antagonists and mutants. J Antimicrob Chemother. 1981;8:249–76. [PubMed] [Google Scholar]

96• . Davies J, Gorini L, Davis BD. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol. 1965;1:93–106. Describes the results of detailed studies which determined the degree of mistranslation and types of mutagenesis induced by various aminoglycoside drugs while the genetic code was first being deciphered. [PubMed] [Google Scholar]

97. Karimi R, Ehrenberg M. Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. Eur J Biochem. 1994;226:355–60. [PubMed] [Google Scholar]

98. Fourmy D, Recht MI, Blanchard SC, Puglisi JD. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science. 1996;274:1367–71. [PubMed] [Google Scholar]

99. Pape T, Wintermeyer W, Rodnina MV. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nat Struct Biol. 2000;7:104–7. [PubMed] [Google Scholar]

100. Rahal JJ, Jr, Simberkoff MS. Bactericidal and bacteriostatic action of chloramphenicol against memingeal pathogens. Antimicrob Agents Chemother. 1979;16:13–18. [PMC free article] [PubMed] [Google Scholar]

101. Goldstein FW, Emirian MF, Coutrot A, Acar JF. Bacteriostatic and bactericidal activity of azithromycin against Haemophilus influenzae. J Antimicrob Chemother. 1990;25 (Suppl A):25–8. [PubMed] [Google Scholar]

102. Roberts E, Sethi A, Montoya J, Woese CR, Luthey-Schulten Z. Molecular signatures of ribosomal evolution. Proc Natl Acad Sci U S A. 2008;105:13953–8. [PMC free article] [PubMed] [Google Scholar]

103. Davis BD, Chen LL, Tai PC. Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc Natl Acad Sci U S A. 1986;83:6164–8. [PMC free article] [PubMed] [Google Scholar]

104. Arrow AS, Taber HW. Streptomycin accumulation by Bacillus subtilis requires both a membrane potential and cytochrome aa3. Antimicrob Agents Chemother. 1986;29:141–6. [PMC free article] [PubMed] [Google Scholar]

105• . Bryan LE, Kwan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob Agents Chemother. 1983;23:835–45. Discusses the role of respiration in the uptake of aminoglycosides, as well as the effects of feedback on respiratory activity upon initial drug molecule-target binding. [PMC free article] [PubMed] [Google Scholar]

106. Hancock R. Uptake of 14C-streptomycin by some microorganisms and its relation to their streptomycin sensitivity. J Gen Microbiol. 1962;28:493–501. [PubMed] [Google Scholar]

107. Kogut M, Lightbrown JW, Isaacson P. Streptomycin Action and Anaerobiosis. J Gen Microbiol. 1965;39:155–64. [PubMed] [Google Scholar]

108. Bryan LE, Kowand SK, Van Den Elzen HM. Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: Clostridium perfringens and Bacteroides fragilis. Antimicrob Agents Chemother. 1979;15:7–13. [PMC free article] [PubMed] [Google Scholar]

109. Anand N, Davis BD. Damage by streptomycin to the cell membrane of Escherichia coli. Nature. 1960;185:22–3. [PubMed] [Google Scholar]

110. Anand N, Davis BD, Armitage AK. Uptake of streptomycin by Escherichia coli. Nature. 1960;185:23–4. [PubMed] [Google Scholar]

111. Ruiz N, Silhavy TJ. Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol. 2005;8:122–6. [PubMed] [Google Scholar]

112. Liu X, De Wulf P. Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J Biol Chem. 2004;279:12588–97. [PubMed] [Google Scholar]

113. Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci U S A. 2004;101:13318–23. [PMC free article] [PubMed] [Google Scholar]

114• . Brazas MD, Hancock RE. Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. Drug Discov Today. 2005;10:1245–52. Discusses the utility of studying gene expression signatures (or patterns in gene expression), derived from microarray-based studies of antibiotic-treated bacteria, in efforts to uncover novel drug targets and off-target effects that contribute to drug-induced cell death. [PubMed] [Google Scholar]

115. Tamae C, et al. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. J Bacteriol. 2008;190:5981–8. [PMC free article] [PubMed] [Google Scholar]

116. Breidenstein EB, Khaira BK, Wiegand I, Overhage J, Hancock RE. Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility. Antimicrob Agents Chemother. 2008;52:4486–91. [PMC free article] [PubMed] [Google Scholar]

117. Dwyer DJ, Kohanski MA, Collins JJ. Networking opportunities for bacteria. Cell. 2008;135:1153–6. [PMC free article] [PubMed] [Google Scholar]

118. Faith JJ, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007;5:e8. [PMC free article] [PubMed] [Google Scholar]

119. Gardner TS, di Bernardo D, Lorenz D, Collins JJ. Inferring genetic networks and identifying compound mode of action via expression profiling. Science. 2003;301:102–5. [PubMed] [Google Scholar]

120. Bonneau R, et al. A predictive model for transcriptional control of physiology in a free living cell. Cell. 2007;131:1354–65. [PubMed] [Google Scholar]

121. Ronen M, Rosenberg R, Shraiman BI, Alon U. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc Natl Acad Sci U S A. 2002;99:10555–60. [PMC free article] [PubMed] [Google Scholar]

122. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO. Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol. 2009;7:129–43. [PMC free article] [PubMed] [Google Scholar]

123. Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003;57:395–418. [PubMed] [Google Scholar]

124. Schurek KN, et al. Novel genetic determinants of low-level aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52:4213–9. [PMC free article] [PubMed] [Google Scholar]

125. Wigle TJ, et al. Inhibitors of RecA activity discovered by high-throughput screening: cell-permeable small molecules attenuate the SOS response in Escherichia coli. J Biomol Screen. 2009;14:1092–101. [PMC free article] [PubMed] [Google Scholar]

126. Imlay JA. How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol. 2002;46:111–53. [PubMed] [Google Scholar]

127. Davies BW, et al. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol Cell. 2009;36:845–60. [PMC free article] [PubMed] [Google Scholar]

128. Dwyer DJ, Kohanski MA, Collins JJ. Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol. 2009;12:482–9. [PMC free article] [PubMed] [Google Scholar]

129. Kohanski MA, DePristo MA, Collins JJ. Sub-lethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Molecular Cell. 2010;XX:XX–XX. [PMC free article] [PubMed] [Google Scholar]

130. Gusarov I, Shatalin K, Starodubtseva M, Nudler E. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science. 2009;325:1380–4. [PMC free article] [PubMed] [Google Scholar]

131. Vazquez-Torres A, et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science. 2000;287:1655–8. [PubMed] [Google Scholar]

132. Eggert US, et al. Genetic basis for activity differences between vancomycin and glycolipid derivatives of vancomycin. Science. 2001;294:361–4. [PubMed] [Google Scholar]

133. Muthaiyan A, Silverman JA, Jayaswal RK, Wilkinson BJ. Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother. 2008;52:980–90. [PMC free article] [PubMed] [Google Scholar]

134. Hancock RE, Rozek A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett. 2002;206:143–9. [PubMed] [Google Scholar]

135. Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7. [PubMed] [Google Scholar]

Read More:  10 a company is more likely to use a job costing system if Ideas

136. Keith CT, Borisy AA, Stockwell BR. Multicomponent therapeutics for networked systems. Nat Rev Drug Discov. 2005;4:71–8. [PubMed] [Google Scholar]

137. Yeh PJ, Hegreness MJ, Aiden AP, Kishony R. Drug interactions and the evolution of antibiotic resistance. Nat Rev Microbiol. 2009;7:460–6. [PMC free article] [PubMed] [Google Scholar]

138• . Yeh P, Tschumi AI, Kishony R. Functional classification of drugs by properties of their pairwise interactions. Nat Genet. 2006;38:489–94. Demonstrates a quantitative, network-based approach for studying drug-drug interactions that also allows for the elucidation of the functional mechanisms underlying drug mode-of-action and affected cellular targets. [PubMed] [Google Scholar]

139. Bollenbach T, Quan S, Chait R, Kishony R. Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. Cell. 2009;139:707–18. [PMC free article] [PubMed] [Google Scholar]

140. Plotz PH, Davis BD. Synergism between streptomycin and penicillin: a proposed mechanism. Science. 1962;135:1067–8. [PubMed] [Google Scholar]

141. Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A. 2007;104:11197–202. [PMC free article] [PubMed] [Google Scholar]

142. Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A. 2009;106:4629–34. [PMC free article] [PubMed] [Google Scholar]

Extra Information About explain the cellular functions that occur when antibiotics attack a bacteria cell. That You May Find Interested

If the information we provide above is not enough, you may find more below here.

How antibiotics kill bacteria: from targets to networks – NCBI

How antibiotics kill bacteria: from targets to networks - NCBI

  • Author: ncbi.nlm.nih.gov

  • Rating: 3⭐ (903308 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Antibiotic drug-target interactions, and their respective direct effects, are generally well-characterized. In contrast, the bacterial responses to antibiotic drug treatments that contribute to cell death are not as well understood and have proven to …

  • Matching Result: by MA Kohanski · 2010 · Cited by 2318 — Antibiotics can be classified based on the cellular component or system they affect, in addition to whether they induce cell death (bactericidal …

  • Intro: How antibiotics kill bacteria: from targets to networks1. Walsh C. Antibiotics: actions, origins, resistance. ASM Press; Washington, D.C: 2003. [Google Scholar]2. Fleming A. On antibacterial action of culture of penicillium, with special reference to their use in isolation of B. influenzae. British Journal of Experimental Pathology. 1929;10:226–236. [PubMed] [Google Scholar]3….
  • Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896384/

How do antibiotics kill bacterial cells but not human cells?

How do antibiotics kill bacterial cells but not human cells?

  • Author: scientificamerican.com

  • Rating: 3⭐ (903308 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Harry Mobley, chair of the department of microbiology and immunology at the University of Michigan Medical School, provides this answer.

  • Matching Result: Indeed, modern antibiotics act either on processes that are unique to bacteria–such as the synthesis of cell walls or folic acid–or on …

  • Intro: How do antibiotics kill bacterial cells but not human cells?Harry Mobley, chair of the department of microbiology and immunology at the University of Michigan Medical School, provides this answer. In order to be useful in treating human infections, antibiotics must selectively target bacteria for eradication and not the cells of…
  • Source: https://www.scientificamerican.com/article/how-do-antibiotics-kill-b/

Explain The Cellular Functions That Occur When Antibiotics …

Explain The Cellular Functions That Occur When Antibiotics ...

  • Author: microblife.in

  • Rating: 3⭐ (903308 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Explain The Cellular Functions That Occur When Antibiotics Attack A Bacteria Cell.? Many antibiotics including penicillin work by attacking the cell wall of bacteria. Specifically … Read more

  • Matching Result: Antibiotics work by interfering with the bacterial cell wall to prevent growth and replication of the bacteria. Human cells do not have cell …

  • Intro: Explain The Cellular Functions That Occur When Antibiotics Attack A Bacteria Cell. – Micro B Life Many antibiotics including penicillin work by attacking the cell wall of bacteria. Specifically the drugs prevent the bacteria from synthesizing a molecule in the cell wall called peptidoglycan which provides the wall with the…
  • Source: https://www.microblife.in/explain-the-cellular-functions-that-occur-when-antibiotics-attack-a-bacteria-cell-2/

Weird Science: Penicillin and the Cell Wall

Weird Science: Penicillin and the Cell Wall

  • Author: manoa.hawaii.edu

  • Rating: 3⭐ (903308 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Modern physicians frequently prescribe antibiotic medications to help people fight infections. One of the first antibiotics discovered was penicillin. Penicillin was first used to treat bacterial infections in 1942 and is derived from…

  • Matching Result: Bacteria can become resistant to antibiotics through the process of selection and evolution. Penicillin kills most of the bacterial cells, but it does not kill …

  • Intro: Weird Science: Penicillin and the Cell WallModern physicians frequently prescribe antibiotic medications to help people fight infections. One of the first antibiotics discovered was penicillin. Penicillin was first used to treat bacterial infections in 1942 and is derived from the fungus Penicillium sp. When used as an antibiotic treatment, penicillin operates…
  • Source: https://manoa.hawaii.edu/exploringourfluidearth/biological/aquatic-plants-and-algae/structure-and-function/weird-science-penicillin-and-cell-wall

How Do Antibiotics Work? – HealthyChildren.org

How Do Antibiotics Work? - HealthyChildren.org

  • Author: healthychildren.org

  • Rating: 3⭐ (903308 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Antibiotic medicines fight infectious bacteria in the body. They attack the disease process by destroying the structure of the bacteria or their ability to divide or reproduce. Antibiotics do not work against viruses. Learn more here.

  • Matching Result: There are also many types of antibiotics. Some, such as penicillin, kill bacteria by destroying the bacterial cell wall. Others, such as tetracycline, …

  • Intro: How Do Antibiotics Work?Antibiotics are powerful medicines to fight certain germs, but they aren’t the answer for every infection your child gets. In fact, there are two major types of germs that cause most infections⁠—viruses and bacteria⁠—antibiotics are useful only against bacteria. Here’s what parents need to know.What are bacteria?Bacteria…
  • Source: https://www.healthychildren.org/English/health-issues/conditions/treatments/Pages/How-Do-Antibiotics-Work.aspx

How do antibiotics work? – FutureLearn

How do antibiotics work? - FutureLearn

  • Author: futurelearn.com

  • Rating: 3⭐ (903308 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Stay updated on the latest events, trends, and commentary before diving in to one of our online courses from top universities.

  • Matching Result: In general terms, antibiotics work by damaging essential parts of the bacterial cell structure, or by preventing essential cellular functions taking place.

  • Intro: Updates, Insights, and News from FutureLearn | Online Learning for YouHow do antibiotics actually work? In this article we will discuss how antibiotics work by killing and preventing bacteria growing. © Wellcome Genome Campus Advanced Courses and Scientific Conferences You have a bacterial infection and are prescribed an antibiotic by…
  • Source: https://www.futurelearn.com/info/courses/antimicrobial-resistance/0/steps/92119

Frequently Asked Questions About explain the cellular functions that occur when antibiotics attack a bacteria cell.

If you have questions that need to be answered about the topic explain the cellular functions that occur when antibiotics attack a bacteria cell., then this section may help you solve it.

How do antibiotics penetrate bacterial cell walls?

Many antibiotics, including penicillin, work by attacking the bacterial cell wall, specifically by preventing the production of the peptidoglycan molecule, which gives the wall the strength it needs to survive in the human body.

What three mechanisms do antibiotics use to combat bacterial cells?

The majority of currently available bactericidal antibiotics, on which this review focuses, ‘inhibit DNA synthesis, RNA synthesis, cell wall synthesis, or protein synthesis’1.

What part of the cell do antibiotics usually attack?

Ribosomes are the cell’s machinery for producing proteins; they are found in both bacterial and human cells, though there are differences between bacterial and human ribosomes. Macrolides only block bacterial ribosomes, preventing them from producing proteins.

What are the five ways that antibiotics work?

Rapid depolarization brought on by the disruption of the plasma membrane causes a loss of membrane potential, which inhibits the synthesis of proteins, DNA, and RNA and ultimately results in the death of the bacterial cell.

Antibiotics attack cell membranes in what way?

Since bacteria are living cells, antibiotics can be used to block specific metabolic pathways found in bacteria and thereby stop the bacterial infection. Antibiotics interfere with metabolic processes inside pathogens.

Quiz about how antibiotics fight bacteria.

Antibiotics primarily work against bacteria in one of two ways: either they stop the bacteria from reproducing or they kill them, for example, by blocking the process that causes the bacteria to build their cell walls.

What are the two mechanisms by which antibiotics kill bacteria?

Therefore, protein synthesis, nucleic acid synthesis, and the synthesis of biological metabolic compounds are among the targets of antibacterial drugs, according to their mechanism of action.

List four examples of the cellular targets that antibiotics target for attack.

There are numerous varieties of antibiotics, some of which, like penicillin, kill bacteria by rupturing their cell walls, while others, like tetracycline, prevent bacteria from reproducing or producing the proteins or nutrients they require to survive.

How exactly does an antibiotic work?

Antimicrobial resistance mechanisms can be divided into four main groups: (1) decreasing drug uptake; (2) altering drug targets; (3) rendering drugs inactive; and (4) active drug efflux.

Which four classes of mechanisms do bacteria use to develop antibiotic resistance?

The antibiotic penicillin blocks the biochemical processes that build the cell wall, preventing growing bacteria from producing cell walls, which causes them to quickly decompose and die. Cell walls are a common defense mechanism for bacteria.

What is the quick explanation of the antibiotics’ mechanism of action?

However, bacteria may also develop resistance in one of two ways: either through a genetic mutation or by acquiring resistance from another bacterium. Some bacteria are naturally resistant to specific types of antibiotics.

What were the four ways that antibiotics worked?

Antibacterial drugs are degraded by enzymes, bacterial proteins that are targets for antibiotics are changed, and membrane permeability to antibiotics is altered. These three processes constitute the three basic mechanisms of antimicrobial resistance.

What are the three mechanisms of bacterial antibiotic resistance?

There are many different types of antibiotics, which work by obstructing vital bacterial processes to either kill the bacteria or stop it from spreading and aid the body’s immune system in battling the infection.

Share this post