10 mid-ocean ridge volcanism produces what type of volcanic rock? Ideas

Below is information and knowledge on the topic mid-ocean ridge volcanism produces what type of volcanic rock? gather and compiled by the show.vn team. Along with other related topics like: what type of magma forms at mid-ocean ridges, What type of volcanoes are at mid ocean ridges, Mid ocean Ridge volcanoes examples, How are mid ocean ridges formed, Mid ocean ridge plate boundary, How many Volcanoes occur in a mid ocean ridge system, what type of magma is created at mid-ocean ridges quizlet.


Ridge Magmatism and Volcanism

Bibliography

  • Agranier, A., et al., 2005. The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth and Planetary Science Letters, 238, 96–109.

    Google Scholar 

  • Allègre, C. J., Hamelin, B., and Dupre, B., 1984. Statistical analysis of isotopic ratios in MORB: the mantle blob cluster model and the convective regime of the mantle. Earth and Planetary Science Letters, 71, 71–84.

    Google Scholar 

  • Arevalo, R., Jr., and McDonough, W. F., 2010. Chemical variations and regional diversity observed in MORB. Chemical Geology, 271, 70–85.

    Google Scholar 

  • Asimow, P. D., Dixon, J. E., and Langmuir, C. H., 2004. A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems, 5, Q01E16.

    Google Scholar 

  • Baker, E. T., Massoth, G. J., and Feely, R.A., 1987. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature, 329(6135), 149–151.

  • Baker, E. T., Lupton, J. E., Resing, J. A., Baumberger, T., Lilley, M. D., Walker, S. L., and Rubin, K. H., 2011. Unique event plumes from a 2008 eruption on the Northeast Lau Spreading Center. Geochemistry, Geophysics, Geosystems, 12, Q0AF02.

    Google Scholar 

  • Baker, E. T., Chadwick, W. W., Jr., Cowen, J. P., Dziak, R. P., Rubin, K. H., and Fornari, D. J., 2012. Hydrothermal discharge during submarine eruptions: the importance of detection, response, and new technology. Oceanography, 25, 128–141.

    Google Scholar 

  • Ballard, R. D., and van Andel, T. H., 1977. Morphology and tectonics of the inner rift valley at lat 36°50′ N on the Mid- Atlantic Ridge, Geol. Soc. Am. Bull., 88, 507–530.

  • Ballard, R. D., van Andel, T. H., and Holcomb, R. T., 1982. The Galapagos Rift at 86°W 5. Variations in volcanism, structure, and hydrothermal activity along a 30-kilometer segment of the rift valley. Journal of Geophysical Research, 87, 1149–1161.

    Google Scholar 

  • Bergmanis, E., Sinton, J. M., and Rubin, K. H., 2007. Recent eruptive history and Magma reservoir dynamics on the Southern East Pacific Rise at 17.5oS. Geochemistry, Geophysics, Geosystems, 8, Q12O06.

    Google Scholar 

  • Bowles, J., Gee, J. S., Kent, D. V., Perfit, M. R., Soule, S. A., and Fornari, D. J., 2006. Paleointensity applications to timing and extent of eruptive activity, 9–10° N East Pacific Rise. Geochemistry, Geophysics, Geosystems, 7, Q06006.

    Google Scholar 

  • Bowles, J. A., Colman, A., McClinton, J. T., Sinton, J. M., White, S. M., and Rubin, K. H., 2014. Eruptive timing and 200 year episodicity at 92° W on the hot spot-influenced Galapagos Spreading Center derived from geomagnetic paleointensity. Geochemistry, Geophysics, Geosystems, 15, 2211–2224.

    Google Scholar 

  • Bown, J. W., and White, R. S., 1994. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth and Planetary Science Letters, 121, 435–451.

    Google Scholar 

  • Buck, W. R., Carbotte, S. M., and Mutter, C., 1997. Controls on extrusion at mid-ocean ridges. Geology, 25, 935–938.

    Google Scholar 

  • Cann, J. R., 1974. A model for oceanic crustal structure developed. Geophysical Journal of the Royal Astronomical Society, 39, 169–187.

    Google Scholar 

  • Cannat, M., Sauter, D., Bezos, A., Meyzen, C., Humler, E., and Le Rigoleur, M., 2008. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 9, Q04002.

    Google Scholar 

  • Carbotte, S. M., Canales, J. P., Nedimović, M. R., Carton, H., and Mutter, J. C., 2012. Recent seismic studies at the East Pacific Rise 8°20′–10°10′N and endeavour segment: Insights into mid-ocean ridge hydrothermal and magmatic processes. Oceanography, 25, 100–112.

    Google Scholar 

  • Carbotte, S. M., Marjanović, M., Carton, H., Mutter, J. C., Canales, J. P., Nedimović, M. R., Han, S., and Perfit, M. R., 2013. Fine-scale segmentation of the crustal magma reservoir beneath the East Pacific Rise. Nature Geoscience, 6, 866–870.

    Google Scholar 

  • Caress, D. W., Clague, D. A., Paduan, J. B., Martin, J. F., Dreyer, B. M., Chadwick, W. W., Jr., Denny, A., and Kelley, D. S., 2012. Repeat bathymetric surveys at 1-metre resolution of lava flows erupted at Axial Seamount in April 2011. Nature Geoscience, 5, 483–488.

    Google Scholar 

  • Carlut, J., Cormier, M.-H., Kent, D. V., Donnelly, K. E., and Langmuir, C. H., 2004. Timing of volcanism along the northern East Pacific Rise based on paleointensity experiments on basaltic glasses. Journal of Geophysical Research, 109, B04104.

    Google Scholar 

  • Chadwick, W. W., Jr., Embley, R. W., and Fox, C. G., 1991. Evidence for volcanic eruption on the southern Juan de Fuca Ridge between 1981 and 1987. Nature, 350, 416–418.

    Google Scholar 

  • Chadwick, W. W., Jr., Nooner, S. L., Zumberge, M. A., Embley, R. W., and Fox, C. G., 2006. Vertical deformation monitoring at axial seamount since its 1998 eruption using deep-sea pressure sensors. Journal of Volcanology and Geothermal Research, 150, 313–32.

    Google Scholar 

  • Chadwick, W. W., Jr., Nooner, S., Butterfield, D. A., and Lilley, M. D., 2012. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount. Nature Geoscience, 5, 474–477.

    Google Scholar 

  • Clague, D. A., Paduan, J. B., and Davis, A. S., 2009. Widespread strombolian eruptions of mid-ocean ridge basalt. Journal of Volcanology and Geothermal Research, 180, 171–188.

    Google Scholar 

  • Clague, D. A., Dreyer, B. M., Paduan, J. B., Martin, J. F., Chadwick, W. W., Jr., Caress, D. W., Portner, R. A., Guilderson, T. P., McGann, M. L., Thomas, H., Butterfield, D. A., and Embley, R. W., 2013. Geologic history of the summit of axial seamount, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 14, 4403–4443.

    Google Scholar 

  • Colman, A., Sinton, J. M., White, S. M., McClinton, J. T., Bowles, J. A., Rubin, K. H., Behn, M. D., Cushman, B., Eason, D. E., Gregg, T. K. P., Grönvold, K., Hidalgo, S., Howell, J., Neill, O., and Russo, C., 2012. Effects of variable magma supply on mid-ocean ridge eruptions: constraints from mapped lava flow fields along the Galápagos Spreading Center. Geochemistry, Geophysics, Geosystems, 13, Q08014.

    Google Scholar 

  • Coogan, L. A., 2007. The lower oceanic crust. Treatise on Geochemistry, 3(19), 1–45.

    Google Scholar 

  • Coogan, L. A., Jenkin, G. R. T., and Wilson, R. N., 2007. Contrasting cooling rates in the lower oceanic crust at fast- and slow-spreading ridges revealed by geospeedometry. Journal of Petrology, 48, 2211–2231.

    Google Scholar 

  • Corliss, J. B., Dymond, J., Gordon, L. I., Edmund, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Brainbridge, A., Crane, K., and Van Andel, T. J., 1979. Submarine thermal springs on the Galapagos Rift. Science, 203, 1073–1083.

    Google Scholar 

  • Cushman, B., Sinton, J. M., Ito, G., and Dixon, J. E., 2004. Glass compositions, plume-ridge interaction, and hydrous melting along the Galápagos Spreading Center, 90.5°W to 98°W. Geophysics Geochemistry Geosystems, 5, 8–17.

    Google Scholar 

  • Dalton, C. A., Langmuir, C. H., and Gale, A., 2014. Geophysical and geochemical evidence for deep temperature variations beneath Mid-Ocean Ridges. Science, 344, 80–83.

    Google Scholar 

  • Delaney, J. R., Kelley, D. S., Lilley, M. D., Butterfield, D. A., Baross, J. A., Wilcock, W. S. D., Embley, R. W., and Summit, M., 1998. The quantum event of oceanic crustal accretion: Impacts of diking at mid-ocean ridges. Science, 281, 222–230.

    Google Scholar 

  • Dick, H. J. B., Fisher, R. L., and Bryan, W. B., 1984. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth and Planetary Science Letters, 69, 88–106.

    Google Scholar 

  • Dupre, B., and Allègre, C. J., 1980. Pb-Sr-Nd isotopic correlation and the chemistry of the North Atlantic mantle. Nature, 286, 17–22.

    Google Scholar 

  • Dziak, R. P., Bohnenstiehl, D. R., Cowen, J. P., Baker, E. T., Rubin, K. H., Haxel, J. H., and Fowler, M. J., 2007. Rapid dike emplacement leads to eruptions and hydrothermal plume release during seafloor spreading events. Geology, 35, 579–582.

    Google Scholar 

  • Dziak, R. P., Hammond, S. R., and Fox, C. G., 2011. A 20-year hydroacoustic time series of seismic and volcanic events in the Northeast Pacific Ocean. Oceanography, 24, 280–293.

    Google Scholar 

  • Dziak, R. P., Haxel, J. H., Bohnenstiehl, D., and Matsumoto, H., 2012. Seismic precursors and magma ascent before the April 2011 eruption at Axial Seamount. Nature Geoscience, 5, 478–482.

    Google Scholar 

  • Elliott, T., and Spiegelman, M., 2007. Melt migration in oceanic crustal production: a U-series perspective. Treatise on Geochemistry, 3(14), 465–510.

  • Elthon, D., 1979. High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278, 514–518.

    Google Scholar 

  • Embley, R. W., Chadwick, W. W., Jr., Perfit, M. R., and Baker, E. T., 1991. Geology of the northern Cleft segment, Juan de Fuca Ridge: recent lava flows, sea-floor spreading, and the formation of megaplumes. Geology, 19, 771–775.

    Google Scholar 

  • Embley, R. W., Chadwick, Jr., W. W., Perfit, M. R., Smith, M. C., and Delaney. J. R., 2000. Recent eruptions on the CoAxial segment of the Juan de Fuca Ridge: Implications for mid-ocean ridge accretion processes, J. Geophys. Res., 105, 16501–16525.

  • Fornari, D. J., Von Damm, K. L., Bryce, J. G., Cowen, J. P., Ferrini, V., Fundis, A., et al., 2012. The East Pacific Rise between 9°N and 10°N: twenty-five years of integrated, multidisciplinary oceanic spreading center studies. Oceanography, 25, 18–43.

    Google Scholar 

  • Fox, C. G., Dziak, R. P., Matsumoto, H., and Schreiner, A. E., 1994. Potential for monitoring low-level seismicity on the Juan de Fuca Ridge using military hydrophone arrays. Marine Technology Society Journal, 27, 22–30.

  • Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., and Schilling, J.-G., 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14, 489–518.

    Google Scholar 

  • Goss, A. R., Perfit, M. R., Ridley, W. I., Rubin, K. H., Kamenov, G. D., Soule, S. A., Fundis, A., and Fornari, D. J., 2010. Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46′N–9°56′N: Implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochemistry, Geophysics, Geosystems, 11, Q05T09.

    Google Scholar 

  • Graham, D. W., Blichert-Toft, J., Russo, C. J., Rubin, K. H., and Albarède, F., 2006. Cryptic striations in the upper mantle revealed by hafnium isotopes in Southeast Indian Ridge basalts. Nature, 440, 199–202.

    Google Scholar 

  • Gregg, T. K. P., and Fink, J. H., 1995. Quantification of submarine lava-flow morphology through analog experiments. Geology, 23, 73–76.

    Google Scholar 

  • Grove, T. L., Kinzler, R. J., and Bryan, W. B., 1992. Fractionation of mid-ocean ridge basalt (MORB). In Phipps Morgan, J., Blackman, D. K., and Sinton, J. M. (eds.), Mantle Flow and Melt Generation at Mid-Ocean Ridges. Washington, DC: American Geophysical Union. American Geophysical Union Monograph, Vol. 71, pp. 281–310.

    Google Scholar 

  • Haase, K. M., Stroncik, N. A., Hékinian, R., and Stoffers, P., 2005. Nb-depleted andesites from the Pacific-Antarctic rise as analogs for early continental crust. Geology, 33, 921–924.

    Google Scholar 

  • Hall, M., 1876. Note upon a portion of Basalt from the mid-Atlantic. The Mineralogical Magazine and Journal, 1, 1–3.

    Google Scholar 

  • Hamelin, B., and Allègre, C. J., 1985. Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature, 315, 196–199.

    Google Scholar 

  • Hanan, B. B., Blichert-Toft, J., Pyle, D. G., and Christie, D. M., 2004. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature, 432, 91–94.

    Google Scholar 

  • Haymon, R. M., Fornari, D. J., Von Damn, K. L., Lilley, M. D., Perfit, M. R., Edmond, J. M., Shanks, W. C., Lutz, R. A., Grebmeier, J. M., Carbotte, S., et al., 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9° 45–52′N: direct submersible observations of seafloor phenomena associated with an eruption event in April 1991. Earth and Planetary Science Letters, 119, 85–101.

    Google Scholar 

  • Helo, C., Longpre, M., Shimizu, A. N., Clague, D. A., and Stix, J., 2011. Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nature Geoscience, 4, 260–263.

    Google Scholar 

  • Herzberg, C., 2004. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. Journal of Petrology, 45, 2389–2405.

    Google Scholar 

  • Ito, G., and Mahoney, J. J., 2005. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth and Planetary Science Letters, 230, 29–46.

    Google Scholar 

  • Keleman, P., and Aharonov, E., 1998. Periodic formation of magma fractures and generation of layered gabbros in the lower crust beneath oceanic spreading ridges. In Buck, W. R., Delaney, P. T., Karson, J. A., and Lagabrielle, Y. (eds.), Faulting and Magmatism at Mid-Ocean Ridges. Washington, DC: American Geophysical Union. American Geophysical Union Monograph, Vol. 106, pp. 267–289.

    Google Scholar 

  • Kelemen, P. B., Hirth, G. B., Shimizu, N., Spiegelman, M., and Dick, H. J. B., 1997. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading centers. Philosophical Transactions of The Royal Society A, 355, 283–318.

    Google Scholar 

  • Kelley, D. S., Baross, J. A., and Delaney, J. R., 2002. Volcanoes, fluids, and life at ridge spreading centers. Annual Review of Earth and Planetary Sciences.30, 385–491.

    Google Scholar 

  • Klein, E. M., and Langmuir, C. H., 1987. Global correlation of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research, 92, 8089–8115.

    Google Scholar 

  • Langmuir, C. H., Bender, J. F., and Batiza, R., 1986. Petrological and tectonic segmentation of the East Pacific Rise, 5 30′-14 30′N. Nature, 322, 422–429.

    Google Scholar 

  • Lissenberg, C. J., and Dick, H. J. B., 2008. Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth and Planetary Science Letters, 271, 311–325.

    Google Scholar 

  • Lissenberg, J. C., Rioux, M., Shimizu, N., Bowring, S. A., and Mével, C., 2009. Zircon dating of oceanic crustal accretion. Science, 3, 1048–1050.

    Google Scholar 

  • Lissenberg, C. J., MacLeod, C. J., Howard, K. A., and Godard, M., 2013. Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth and Planetary Science Letters, 361, 436–447.

    Google Scholar 

  • Liu, C.-Z., et al., 2008. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature, 452, 312–316.

  • Macdonald, K. C., 1982. Mid-ocean ridges: fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annual Review of Earth and Planetary Science, 10, 155–190.

    Google Scholar 

  • Macdonald, K. C., 1998. Linkages between faulting, volcanism, hydrothermal activity and segmentation on fast spreading centers. In Buck, R. (ed.), Faulting and Magmatism at Mid-Ocean Ridges. Washington, DC: AGU. AGU Geophysical Monograph, Vol. 106, p. 27.

    Google Scholar 

  • Mahoney, J. J., Natland, J. H., White, W. M., Poreda, R., Fisher, R. L., Bloomer, S. H., and Baxter, A. N., 1989. Isotopic and geochemical provinces of the western Indian Ocean spreading centers. Journal of Geophysical Research, 94, 4033–4053.

    Google Scholar 

  • Martin, E., and Sigmarsson, O., 2007. Crustal thermal state and origin of silicic magma in Iceland: the case of Torfajökull, Ljósufjöll and Snæfellsjökull volcanoes. Contributions to Mineralogy and Petrology, 153, 593–605.

    Google Scholar 

  • McClinton, T., White, S. M., Colman, A., and Sinton, J. M., 2013. Reconstructing lava flow emplacement processes at the hot spot-affected Galápagos Spreading Center, 95°W and 92°W. Geochemistry, Geophysics, Geosystems, 14, 2731–2756.

    Google Scholar 

  • Meyzen, C. M., et al., 2007. Isotopic portrayal of the Earth’s upper mantle flow field. Nature, 447, 1069–1074.

    Google Scholar 

  • Michael, P. J., and Cornell, W. C., 1998. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. Journal of Geophysical Research, 103, 18325–18356.

    Google Scholar 

  • Michael, P. J., Langmuir, C. H., Dick, H. J. B., Snow, J. E., Goldstein, S. L., Graham, D. W., Lehnert, K., Kurras, G., Jokat, W., Mühe, R., and Edmonds, H. N., 2003. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean. Nature, 423, 956–961.

    Google Scholar 

  • Murray, J., and Renard, A. F., 1891. Report on Deep-Sea Deposits, Based on Specimens Collected During the Voyage of H.M.S. Challenger in the Years 1872–76. London: H. M. Stationary Office.

  • Niu, Y., and O’Hara, M. J., 2008. Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth: a New Perspective. Journal of Petrology, 49, 633–664.

    Google Scholar 

  • O’Neill, H. S. C., and Jenner, F. E., 2012. The global pattern of trace-element distributions in ocean floor basalts. Nature, 491, 698–705.

    Google Scholar 

  • Pallister, J. S., and Hopson, C. A., 1981. Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. Journal of Geophysical Research, 86, 2593–2644.

    Google Scholar 

  • Paonita, A., and Martelli, M., 2007. A new view of the He–Ar–CO2 degassing at mid-ocean ridges: homogeneous composition of magmas from the upper mantle. Geochimica et Cosmochimica Acta, 71, 1747–1763.

    Google Scholar 

  • Perfit, M. R., and Chadwick, W. W., Jr., 1998. Magmatism at mid-ocean ridges: constraints from volcanological and geochemical investigations. In Buck, W. R., Delaney, P. T., Karson, J. A., and Lagabrielle, Y. (eds.), Faulting and Magmatism at Mid-Ocean Ridges. Washington, DC: American Geophysical Union. American Geophysical Union Monograph, Vol. 106, pp. 59–115.

    Google Scholar 

  • Perfit, M. R., Fornari, D. J., Smith, M. C., Bender, J. F., Langmuir, C. H., and Haymon, R. M., 1994. Small-scale spatial and temporal variations in mid-ocean ridge crest magmatic processes. Geology, 22, 375–379.

    Google Scholar 

  • Phipps Morgan, J., and Chen, Y. J., 1994. The genesis of oceanic crust: magma injection, hydrothermal circulation, and crustal flow. Journal of Geophysical Research, 98, 6283–6298.

    Google Scholar 

  • Pollock, M. A., Klein, E. M., Karson, J. A., and Coleman, D. S., 2009. Compositions of dikes and lavas from the Pito Deep Rift: implications for accretion at superfast spreading centers. Journal of Geophysical Research, 114, B03207.

    Google Scholar 

  • Reynolds, J. R., Langmuir, C. H., Bender, J. F., Kastens, K. A., and Ryan, W. B. F., 1992. Spatial and temporal variability geochemistry of basalts from the East Pacific Rise. Nature, 359, 493–499.

    Google Scholar 

  • Rubin, K. H., and Sinton, J. M., 2007. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth and Planetary Science Letters, 260, 257–276.

    Google Scholar 

  • Rubin, K. H., Macdougall, J. D., and Perfit, M. R., 1994. 210Po-210Pb dating of recent volcanic eruptions on the sea floor. Nature, 368, 841–844.

    Google Scholar 

  • Rubin, K. H., Smith, M. C., Bergmanis, E. C., Perfit, M. R., Sinton, J. M., and Batiza, R., 2001. Geochemical heterogeneity within mid-ocean ridge lava flows: insights into eruption, emplacement and global variations in magma generation. Earth and Planetary Science Letters, 188, 349–367.

    Google Scholar 

  • Rubin, K. H., van der Zander, I., Smith, M. C., and Bergmanis, E. C., 2005. Minimum speed limit for ocean ridge magmatism from 210Pb-226Ra-230Th disequilibria. Nature, 437, 534–538.

    Google Scholar 

  • Rubin, K. H., Sinton, J. M., Maclennan, J., and Hellebrand, E., 2009. Magmatic filtering of mantle compositions at mid-ocean ridge volcanoes. Nature Geoscience, 2, 321–328.

    Google Scholar 

  • Rubin, K. H., Soule, S. A., Chadwick, W. W., Fornari, D. J., Clague, D. S., Embley, R. W., Baker, E. T., Perfit, M. R., Caress, D. W., and Dziak, R. P., 2012. Volcanic eruptions in the deep sea. Oceanography, 25, 142–157.

    Google Scholar 

  • Rubin, K. H., Soule, Fornari, D. J., Tolstoy, M. Bryce, J. G. Prado, F., Wauldhauser, F., Shank, T. M. Perfit, M. R., and Von Damm, K., 2015. First detailed study of a multiphase deep-sea mid-ocean ridge eruption reveals new volcanic style (2015)

  • Russo, C. J., Rubin, K. H., and Graham, D. W., 2009. Mantle melting and magma supply to the Southeast Indian Ridge: the roles of lithology and melting conditions from U-series disequilibria. Earth and Planetary Science Letters, 278, 55–66.

    Google Scholar 

  • Schilling, J.-G., 1991. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature, 352, 397–403.

    Google Scholar 

  • Schmitt, A. K., Perfit, M. R., Rubin, K. H., Stockli, D. F., Smith, M. C., Cotsonika, L. A., Zellmer, G. F., Ridley, W. I., and Lovera, O. M., 2011. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology. Earth and Planetary Science Letters, 302, 349–358.

    Google Scholar 

  • Searle, R. C., Murton, B. J., Achenbach, K., LeBas, T., Tivey, M., Yeo, I., Cormier, M. H., Carlut, J., Ferreira, P., Mallows, C., et al., 2010. Structure and development of an axial volcanic ridge: mid-Atlantic Ridge, 45°N. Earth and Planetary Science Letters, 299, 228–241.

    Google Scholar 

  • Sims, K. W. W., et al., 2012. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochimica et Cosmochimica Acta, 66, 3481–3504.

    Google Scholar 

  • Singh, S. C., Kent, G. M., Collier, J. S., Harding, A. J., and Orcutt, J. A., 1998. Melt to mush variations in crustal magma properties along the ridge crest at the southern East Pacific Rise. Nature, 394, 874–878.

    Google Scholar 

  • Sinton, J. M., and Detrick, R. S., 1992. Mid-ocean ridge magma chambers. Journal of Geophysical Research, 97, 197–216.

    Google Scholar 

  • Sinton, J. M., Wilson, D., Christie, D. M., Hey, R. N., and Delaney, J. R., 1983. Petrological consequences of rift propagation on oceanic spreading ridges. Earth and Planetary Science Letters, 62, 193–207.

    Google Scholar 

  • Sinton, J. M., Smaglik, S. M., Mahoney, J. J., and Macdonald, K. C., 1991. Magmatic, processes at superfast spreading mid-ocean ridges: glass compositional variations along the East Pacific Rise, 13-23 S. Journal of Geophysical Research, 96, 6133–6155.

    Google Scholar 

  • Sinton, J., Bergmanis, E., Rubin, K. H., Batiza, R., Gregg, T. K., Grönvold, P. K., Macdonald, K., and White, S., 2002. Volcanic eruptions on mid-ocean ridges: New evidence from the superfast-spreading East Pacific Rise, 17°-19°S. Journal of Geophysical Research, 107(B6), 2115.

    Google Scholar 

  • Small, C., 1998. Global systematics of mid-ocean ridge morphology. In Buck, W. R., Delaney, P. T., Karson, J. A., and Lagabrielle, Y. (eds.), Faulting and Magmatism at Mid-Ocean Ridges. Washington, DC: American Geophysical Union. American Geophysical Union Monograph, Vol. 106, pp. 59–115.

    Google Scholar 

  • Soule, S. A., Fornari, D. J., Perfit, M. R., and Rubin, K. H., 2007. New insights into mid-ocean ridge volcanic processes from the 2005–2006 eruption of the East Pacific Rise, 9°46′N–9°56′N. Geology, 35, 1079–1082.

    Google Scholar 

  • Soule, S. A., Nakata, D. S., Fornari, D. J., Fundis, A. T., Perfit, M. R., and Kurz, M. D., 2012. CO2 variability in mid-ocean ridge basalts from syn-emplacement degassing: constraints on eruption dynamics. Earth and Planetary Science Letters, 327–328, 39–49.

    Google Scholar 

  • Spiess, F. N., Macdonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., et al., 1980. East pacific rise: hot springs and geophysical experiments. Science, 207, 1421–1433.

    Google Scholar 

  • Standish, J. J., and Sims, K. W. W., 2010. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge. Nature Geoscience, 3, 286–292.

    Google Scholar 

  • Stracke, A., Bourdon, B., and McKenzie, D., 2006. Melt extraction in the Earth’s mantle: constraints from U–Th–Pa–Ra studies in oceanic basalts. Earth and Planetary Science Letters, 244, 97–112.

    Google Scholar 

  • Stracke, A., Snow, J. E., Hellebrand, E., von der Handt, A., Bourdon, B., Birbaum, K., and Günther, D., 2011. Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth and Planetary Science Letters, 308, 359–368.

    Google Scholar 

  • Suhr, G., Hellebrand, E., Johnson, K. T. M., and Brunelli, D., 2008. Stacked gabbro units and intervening mantle: a detailed look at a section of IODP Leg 305, Hole U1309D. Geochemistry, Geophysics, Geosystems, 9, Q10007.

  • Tolstoy, M., Cowen, J. P., Baker, E. T., Fornari, D. J., Rubin, K. H., Shank, T. M., Waldhauser, F., Bohnenstiehl, D. R., Forsyth, D. W., Holmes, R. C., et al., 2006. A sea-floor spreading event captured by seismometers. Science, 314, 1920–1922.

    Google Scholar 

  • Von Damm, K. L., et al., 2004. Evolution of the hydrothermal system at East Pacific Rise 9°50′N: geochemical evidence for changes in the upper oceanic crust. In German, C. R. (ed.), Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Ocean. Washington, DC: American Geophysical Union. AGU Geophysical Monograph, Vol. 148, pp. 285–304.

  • Wadge, G., 1982. Steady state volcanism: evidence from eruption histories of polygenetic volcanoes. Journal of Geophysical Research, 87, 4035–4049.

    Google Scholar 

  • Wanless, V. D., Perfit, M. R., Ridley, W. I., and Klein, E., 2010. Dacite petrogenesis on mid-ocean ridges: evidence for oceanic crustal melting and assimilation. Journal of Petrology, 51, 2377–2410.

    Google Scholar 

  • Waters, C. L., Sims, K. W. W., Klein, E. M., White, S. M., et al., 2013. Sill to surface: linking young off-axis volcanism with subsurface melt at the overlapping spreading center at 9°03′N East Pacific Rise. Earth and Planetary Science Letters, 369–370, 59–70.

    Google Scholar 

  • White, S. M., Haymon, R. H., Fornari, D. J., Perfit, M. R., and Macdonald, K. C., 2002. Volcanic structures and lava morphology of the East Pacific Rise, 9-10N: constraints on volcanic segmentation and eruptive processes at fast-spreading ridges. Journal of Geophysical Research, 107, B8, doi:10.1029/2001JB000571.

  • White, S. M., Crisp, J. A., and Spera, F. J., 2006. Long-term volumetric eruption rates and magma budgets. Geochemistry, Geophysics, Geosystems, 7, Q03010.

  • Yeo, I., Searle, R. C., Achenbach, K. L., Le Bas, T. P., and Murton, B. J., 2012. Eruptive hummocks: building blocks of the upper ocean crust. Geology, 40, 91–94.

    Google Scholar 

Download references

Extra Information About mid-ocean ridge volcanism produces what type of volcanic rock? That You May Find Interested

If the information we provide above is not enough, you may find more below here.

Mid-ocean Ridge Magmatism and Volcanism | SpringerLink

Mid-ocean Ridge Magmatism and Volcanism | SpringerLink

  • Author: link.springer.com

  • Rating: 3⭐ (827265 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary: Agranier, A., et al., 2005. The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth and Planetary Science Letters, 238, 96–109.

  • Matching Result: The ridge system generally produces a layered crust, with volcanic rocks on top, coarse-grained intrusive rocks at depth, and an intervening …

  • Intro: Mid-ocean Ridge Magmatism and VolcanismBibliographyAgranier, A., et al., 2005. The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth and Planetary Science Letters, 238, 96–109.CrossRef  Google Scholar  Allègre, C. J., Hamelin, B., and Dupre, B., 1984. Statistical analysis of isotopic ratios in MORB: the mantle blob cluster model and the…
  • Source: https://link.springer.com/10.1007/978-94-007-6238-1_28

Mid-ocean ridges – Volcano World – Oregon State University

Mid-ocean ridges - Volcano World - Oregon State University

  • Author: volcano.oregonstate.edu

  • Rating: 3⭐ (827265 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary: spread.gif This is a map of the major oceanic spreading centers. This is sometimes considered to be one ~70,000 km-long volcano. Here, the plates are pulled apart by convection in the upper mantle, and lava intrudes to the surface to fill in…

  • Matching Result: The lava produced at the spreading centers is basalt, and is usually abbreviated MORB (for Mid-Ocean Ridge Basalt). MORB is by far the most common rock type …

  • Intro: Mid-ocean ridges This is a map of the major oceanic spreading centers. This is sometimes considered to be one ~70,000 km-long volcano. Here, the plates are pulled apart by convection in the upper mantle, and lava intrudes to the surface to fill in the space. Or, the lava intrudes to…
  • Source: https://volcano.oregonstate.edu/mid-ocean-ridges

Mid-Ocean Ridge – an overview | ScienceDirect Topics

Mid-Ocean Ridge - an overview | ScienceDirect Topics

  • Author: sciencedirect.com

  • Rating: 3⭐ (827265 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary: Peter T. Harris, in Seafloor Geomorphology as Benthic Habitat, 2012

  • Matching Result: The mid-ocean ridges are the Earth’s largest volcanic system, accounting for more than 75% of all volcanic activity on the planet. The heat from this volcanism …

  • Intro: Mid-Ocean Ridge – an overviewSeafloor Geomorphology—Coast, Shelf, and AbyssPeter T. Harris, in Seafloor Geomorphology as Benthic Habitat, 2012Mid-Ocean RidgesMid-ocean ridges are created by the upwelling of basaltic lava and lateral rifting of ocean crust (Figure 6.12). They form a rift valley system that encircles the Earth along a total length…
  • Source: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/mid-ocean-ridge

4 Igneous Processes and Volcanoes – OpenGeology

4 Igneous Processes and Volcanoes - OpenGeology

  • Author: opengeology.org

  • Rating: 3⭐ (827265 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary: KEY CONCEPTS

  • Matching Result: Intrusive rocks, forming underground with larger, stronger crystals, are more likely to last. Therefore, most landforms and rock groups that owe their origin to …

  • Intro: 4 Igneous Processes and Volcanoes – An Introduction to Geology Mount Vesuvius towers over the ruins of Pompeii, a city destroyed by the eruption in 79 CE. KEY CONCEPTS By the end of this chapter, students should be able to: Explain the origin of magma it relates to plate tectonics…
  • Source: https://opengeology.org/textbook/4-igneous-processes-and-volcanoes/

Mid Ocean Ridge (MORB) – Andrea Felice: Igneous World Tour

Mid Ocean Ridge (MORB) – Andrea Felice: Igneous World Tour

  • Author: sites.lafayette.edu

  • Rating: 3⭐ (827265 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary: Mid ocean Ridges are the most prominent producers of magma globally. The magma is produced by decompression melting, which occurs when two plates move away from each other. This tectonic boundary is a Divergent Boundary.  Typically it produces oceanic crust and typically…

  • Matching Result: Mid ocean Ridges are the most prominent producers of magma globally. The magma is produced by decompression melting, which occurs when two plates move away …

  • Intro: Mid Ocean Ridge (MORB) – Andrea Felice: Igneous World Tour Mid ocean Ridges are the most prominent producers of magma globally. The magma is produced by decompression melting, which occurs when two plates move away from each other. This tectonic boundary is a Divergent Boundary.  Typically it produces oceanic crust…
  • Source: https://sites.lafayette.edu/felicea/mid-ocean-ridge-morb/

What is the mid-ocean ridge? – NOAA Ocean Exploration

What is the mid-ocean ridge? - NOAA Ocean Exploration

  • Author: oceanexplorer.noaa.gov

  • Rating: 3⭐ (827265 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary: The mid-ocean ridge is the most extensive chain of mountains on Earth, stretching nearly 65,000 kilometers (40,390 miles) and with more than 90 percent of the mountain range lying in the deep ocean.

  • Matching Result: As the plates separate, molten rock rises to the seafloor, producing enormous volcanic eruptions of basalt. The speed of spreading affects the shape of a …

  • Intro: What is the mid-ocean ridge?: Ocean Exploration Facts: NOAA Ocean Exploration The mid-ocean ridge is the most extensive chain of mountains on Earth, stretching nearly 65,000 kilometers (40,390 miles) and with more than 90 percent of the mountain range lying underwater, in the deep ocean. The nearly continuous, global mid-ocean…
  • Source: https://oceanexplorer.noaa.gov/facts/mid-ocean-ridge.html

Frequently Asked Questions About mid-ocean ridge volcanism produces what type of volcanic rock?

If you have questions that need to be answered about the topic mid-ocean ridge volcanism produces what type of volcanic rock?, then this section may help you solve it.

Is volcanic rock present in the mid-ocean ridge?

Under a typical mid-ocean ridge, mantle material partially melts as it rises in response to reduced pressure; the mid-ocean ridge is composed of thousands of individual volcanoes or volcanic ridge segments that erupt periodically.

On mid-ocean ridges, what kind of lava is produced?

As the entire ocean floor is made of basalt, the lava produced at the spreading centers is known as MORB (for Mid-Ocean Ridge Basalt), and is by far the most prevalent rock type on the Earth’s surface.

Where does the magma from the mid-ocean ridge originate?

Abstract: At divergent plate boundaries, magma is produced by the decompression melting of upwelling mantle. Melts are focused as they ascend through the upper mantle and lower crust, and they then collect beneath the ridge axis in elongate melt lenses.

What kind of rock does the mid-ocean ridge consist of?

The most prevalent rock on Earth, basalt, makes up the majority of the material that erupts at spreading centers along the mid-ocean ridge.

What kind of rocks can be found at the quizlet for the mid-ocean ridge?

Mafic intrusive igneous rock is frequently found in ancient mountains made of compressed and uplifted oceanic crust or along mid-ocean ridges.

What is a basalt from a mid-ocean ridge?

Mid-ocean ridge basalt, also known as MORB, is a type of submarine basalt that has formed along the entire 65 000 km length of the Earth’s mid-ocean ridge system as a result of sea floor spreading.

What is produced by a mid-ocean ridge?

As the Earth’s tectonic plates separate, molten rock rises to the seafloor, causing massive basalt volcanic eruptions. These mid-ocean ridges form along divergent plate boundaries, where new ocean floor is formed as the plates spread apart.

What results from mid-ocean ridges?

At divergent plate boundaries, new ocean crust is produced by igneous intrusions and extrusions as magma either cools beneath the Earth’s surface or erupts as lava above the Earth’s surface, resulting in seafloor spreading and the formation of mid-ocean ridges.

Read More:  10 when is allocative efficiency met in a perfectly competitive market? Ideas

Share this post