10 name two factors that affect how and when cells differentiate Ideas

Contents

Below is information and knowledge on the topic name two factors that affect how and when cells differentiate gather and compiled by the show.vn team. Along with other related topics like: What stimulates human stem cells to differentiate into specialized blood cells, Cell differentiation, What is cell specialization or differentiation, How does the ability of cells to differentiate in humans compare to the ability in plants, How do cells differentiate, Factors affecting cell differentiation, Cell differentiation examples, What is cell specialization in a multicellular organism.


nvolved in Cell Differentiation

During cell differentiation in multicellular organisms, cells become specialized and take on roles such as those of nerve, muscle and blood cells. Factors involved in triggering cell differentiation include cell signaling, environmental influences and the level of development of the organism.

Basic cell differentiation occurs after a sperm cell fertilizes an egg and the resulting zygote reaches a certain size. At that point the zygote starts developing different cell types and needs differentiated cells to take on the specialized functions.

The mechanism that is at the root of cell differentiation is gene expression. All the cells of an organism have identical sets of genes because the genetic code was copied from the original egg cell fertilized by the sperm cell. To take on a specialized function, a cell will only express or use some of the genes in its genetic code and ignore the rest.

For example, a cell that differentiates to become a liver cell will express the liver cell genes, and all the other liver cells will use the same set of liver genes. They will differentiate together to form the liver.

Cell differentiation takes place in three situations:

  • The growth of an immature organism into an adult.
  • Normal turnover of cells such as blood cells in mature organisms.
  • The repair of damaged tissues when specialized cells have to be replaced.

In each case, cell signaling informs cells what type of specialized cell is required. Undifferentiated cells express the corresponding genes to fulfill the needs of the organism.

Gene Expression Works by Making Copies of the Gene

The genetic code of eukaryotic cells is located on the DNA in the nucleus. The DNA can’t leave the nucleus so the cell has to copy the gene it wants to express.

Messenger RNA (mRNA) attaches to the DNA and copies the relevant gene. The mRNA can travel outside the nucleus and bring the genetic instructions to ribosomes that are floating in the cell cytoplasm or that are attached to the endoplasmic reticulum. The ribosomes produce the protein encoded by the expressed gene.

Depending on the signals received by the cell, the environmental influences and the developmental stage of the cell, the process of gene expression can be blocked at any stage. If the protein encoded by the gene is not needed by the organism, the mRNA will not copy the gene, and the gene expression process will not start.

Even after the mRNA copies the gene, the mRNA molecule may be blocked from exiting the nucleus or may not be able to reach a ribosome. Ribosomes may not produce the required protein even if mRNA delivers the copied genetic code. Different factors can influence gene expression all through this multi-step process.

Internal Factors That Affect Cell Specialization

Organisms have several ways of ensuring that cells develop into the specialized and differentiated cells needed.

The key factor driving cellular differentiation in the body is the manufacture of proteins. Cells can differentiate depending on which genes are expressed and which proteins are encoded in the expressed genes. The produced proteins help the differentiated cells perform their specialized function and let them tell other cells what they are doing through cell signaling.

Read More:  10 how was the holy roman emperor's power limited Ideas

A further mechanism that can influence cell differentiation is asymmetric segregation in cell division. Substances such as special proteins gather at one end of a cell. When the cell divides, one daughter cell has more of the special proteins than the other. The cells become different types of cells due to the different protein distribution.

As a cell differentiates, the type of specialization it can take on becomes more limited. Embryonic stem cells can initially become any type of cell, but once the cell is mature and has taken on a specialized role, it often can no longer change. Embryonic stem cells are called totipotent cells because they can still take on any role while mature, specialized cells that are fully differentiated can only carry out their specialized function.

Asymmetric Segregation Produces Different Cells

Gene expression is responsible for cell specialization, but the basic cells have to be able to take on the specialized functions. Before differentiation and cell specialization can take place, the right type of cell has to be available. Asymmetric segregation can produce such different types of cells. Totipotent embryonic cells become one of three types of pluripotent cells that eventually differentiate into the various body tissues.

The three types of pluripotent cells are:

  • Endoderm cells become the lining of the respiratory and digestive tracts as well as forming the liver and many of the major glands such as the pancreas.
  • Mesoderm cells differentiate to form muscles, bones, connective tissue and the heart.
  • Ectoderm cells form the skin and nerves.

While cell signaling is responsible for the production of some different cell types and for cell specialization, asymmetric segregation acts at the beginning of cell development to produce pluripotent cells.

DNA transcription to mRNA takes place in such as way that the mRNA produces certain proteins at one end of the cell and different proteins at the other end. Cell division results in two different types of daughter cells that can go on to produce cells with different specializations.

Cell Signaling Is at the Root of Cell Differentiation

Internal mechanisms that influence the cell differentiation of pluripotent cells are mainly based on cell signaling. Cells receive chemical signals that tell them what type of cell or what kind of protein is needed.

Cell signaling mechanisms include:

  • Diffusion, in which cells release chemicals that spread throughout the tissues.
  • Direct contact, in which cells have special chemicals on their cell membranes.
  • Gap junctions, in which signaling chemicals can pass directly from one cell to another.

Cells continuously send out chemical messages regarding their activities and receive signals about what is going on in their immediate neighborhood, in the tissues where they are located and in the body at large. These signals are the principal factors that affect cell specialization, and cell signaling is the key factor driving cell differentiation in the body.

Cell Signaling by Diffusion Influences Tissue Development

Cells become sensitive to certain chemical signals because they have receptors on their cell membrane. The receptors depend on the type of cell, how it has developed and which genes are being expressed. As receptors are activated, the cell differentiates further.

When a cell sends a signal to many nearby cells, it emits a chemical that diffuses through the tissue in which the cell is embedded. The chemical signal is captured by receptors in the cell membranes of the surrounding cells and triggers a response inside each cell. These responses help cause the cells to differentiate in a way that builds tissue.

For example, cells that will become part of a liver emit chemicals that trigger the corresponding receptors in nearby cells, and all the cells in that location differentiate to become liver cells. As the liver tissue forms, further cell signaling triggers some cells to differentiate into duct cells or connecting tissue. Eventually the differentiated cells form a complete and functional liver.

Local Cell Signaling Lets Cells Recognize Their Neighbors

To develop into the specialized cells needed by the organism, cells have to know what other cells in their immediate surroundings are doing. Special receptors for cell-to-cell contact and gap junctions between cells facilitate the direct exchange of signals between neighboring cells. Cells can ensure that their surroundings correspond to their differentiated specialization.

In cell-to-cell signaling, specially formed receptor proteins on the surface of a cell match corresponding proteins on a neighboring cell’s membrane. When the cells come into contact, the two proteins link, and a signal is triggered from one cell to the other. The signal passes through the cell membrane and enters the cell where it causes a specific cell behavior.

For example, skin cells have to make sure they have other skin cells around them, but some skin cells will have the cells of the underlying tissue beneath them. Cell-to-cell signaling lets cells ensure that their surroundings match their differentiation.

Read More:  10 describe the sources of marine debris and explain why it is a problem with global origins. Ideas

Gap junctions are special links between neighboring cells that allow an easy and direct exchange of proteins acting as messages. Using gap junctions, cells can coordinate their activities and exchange signals quickly and easily.

For example, nerve cells use gap junctions to establish nerve pathways, and gap junctions let cells differentiate into the type of nerve cell that is appropriate to their location in the skin, in the spinal cord or in the brain.

Factors Affecting Cell Signaling Influence Cell Differentiation

Cell signaling and the resulting cell differentiation are complex processes with many steps. Signals have to be produced, propagated received and acted upon. Triggers resulting from cell signals have to work as expected. Factors that disrupt any of the steps can influence cell differentiation and cause changes in the organism.

Factors that can influence and disrupt cell signaling and cell differentiation include a lack of nutrients; if a cell can’t produce a protein because it lacks the building blocks, it can’t differentiate. Mutations in the genetic code are another problem.

If the DNA is defective or the transcription is wrong, the signaling and differentiation process is disrupted. In addition to these, if the signaling chemicals are blocked or the cell receptors are filled with non-signaling chemical bonds, the signaling process will not work properly.

Environmental Factors Can Influence Cell Differentiation

Influences from the environment of the organism that can affect cell signaling, gene expression and cell differentiation can change, stop or disrupt the process. Some environmental factors are used by the organism for adaptation, some can be used to fight disease and some harm or kill the organism.

For example, environmental temperature can influence the development of some organisms. Higher temperatures speed up the growth of cells and their differentiation while low temperatures slow down or stop development.

Drugs can disrupt harmful cell differentiation. For example, drugs can block one of the process steps for unlimited tumor growth and stop the expression of the corresponding genes.

Injuries can affect gene expression and influence what type of cell is needed to repair damage. Viruses and bacteria can influence cell differentiation. For example, if a mother is infected with a disease such as rubella, the developing fetus can have its cell differentiation influenced, and it can develop birth defects.

Finally toxic chemicals can affect cell differentiation. Substances that attack or block signaling chemicals or that block signal receptor positions on cell membranes can stop signaling activity and influence cell differentiation.

In the case of these environmental factors, the organism tries to respond by adapting or by changing internal processes. Adaptation is effective for some of the environmental influences, but for others, the organism may survive but exhibit defects, or the organism may die.

Extra Information About name two factors that affect how and when cells differentiate That You May Find Interested

If the information we provide above is not enough, you may find more below here.

Factors Involved in Cell Differentiation – Sciencing

Factors Involved in Cell Differentiation - Sciencing

  • Author: sciencing.com

  • Rating: 4⭐ (773262 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary: Factors that affect cell specialization and cell differentiation include internal influences and environmental conditions. Defective DNA and disease can block the cell signaling that guides cell differentiation. Chemicals and drugs from external sources can disrupt…

  • Matching Result: Factors that affect cell specialization and cell differentiation include internal influences and environmental conditions.

  • Intro: Factors Involved in Cell Differentiation During cell differentiation in multicellular organisms, cells become specialized and take on roles such as those of nerve, muscle and blood cells. Factors involved in triggering cell differentiation include cell signaling, environmental influences and the level of development of the organism. Basic cell differentiation occurs…
  • Source: https://sciencing.com/factors-involved-cell-differentiation-6935462.html

Cell Differentiation, Tissue | Learn Science at Scitable – Nature

Cell Differentiation, Tissue | Learn Science at Scitable - Nature

  • Author: nature.com

  • Rating: 4⭐ (773262 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary: The organized arrangement of cells in tissues relies on controlled cell division and cell death. Learn how cells are replenished by stem cells and removed by apoptosis.

  • Matching Result: Transcription factors can turn on at different times during cell differentiation. As cells mature and go through different stages (arrows), transcription …

  • Intro: Cell Differentiation, Tissue Within multicellular organisms, tissues are organized communities of cells that work together to carry out a specific function. The exact role of a tissue in an organism depends on what types of cells it contains. For example, the endothelial tissue that lines the human gastrointestinal tract consists…
  • Source: https://www.nature.com/scitable/topicpage/cell-differentiation-and-tissue-14046412/

Factors and molecules that could impact cell differentiation in …

Factors and molecules that could impact cell differentiation in ...

  • Author: ncbi.nlm.nih.gov

  • Rating: 4⭐ (773262 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary: Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate…

  • Matching Result: by R Simões · 2017 · Cited by 3 — The differentiated state of cells is very stable, and it is unusual to change fate of cells that have embarked on one pathway of differentiation.

  • Intro: Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer1. Bromhall JD. Nuclear transplantation in the rabbit egg. Nature. 1975;258:719–22. doi: 10.1038/258719a0. PMID:1207752. [PubMed] [CrossRef] [Google Scholar]2. De Robertis EM, Gurdon JB. Gene activation in somatic nuclei after injection into amphibian oocytes. Proc Natl Acad…
  • Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669214/

Read More:  10 how does the top level of an energy pyramid compare to the bottom level of that energy pyramid? Ideas

Cellular Differentiation – an overview | ScienceDirect Topics

Cellular Differentiation - an overview | ScienceDirect Topics

  • Author: sciencedirect.com

  • Rating: 4⭐ (773262 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary: V. Gallo, L.-J. Chew, in Encyclopedia of Neuroscience, 2009

  • Matching Result: Differentiation selects a subset of genetic information to be expressed at different stages of the differentiation process. Therefore, differentiated cells can …

  • Intro: Cellular Differentiation – an overviewNeurotransmitter and Hormone Receptors on Oligodendrocytes and Schwann CellsV. Gallo, L.-J. Chew, in Encyclopedia of Neuroscience, 2009Cell differentiation and survivalOPC differentiation can be monitored by using specific antibodies that bind to developmentally regulated antigens. The possibility of monitoring OPC lineage progression has provided unique opportunities to…
  • Source: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cellular-differentiation

Cellular differentiation – Wikipedia

Cellular differentiation - Wikipedia

  • Author: en.wikipedia.org

  • Rating: 4⭐ (773262 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary:

  • Matching Result: Some differentiation occurs in response to antigen exposure. Differentiation dramatically changes a cell’s size, shape, membrane potential, metabolic activity, …

  • Intro: Cellular differentiation Stem cell differentiation into various tissue types. Cell-count distribution featuring cellular differentiation for three types of cells (progenitor , osteoblast , and chondrocyte ) exposed to pro-osteoblast stimulus.[1] Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one.[2][3] Usually, the…
  • Source: https://en.wikipedia.org/wiki/Cellular_differentiation

3.6 Cellular Differentiation – Anatomy & Physiology

3.6 Cellular Differentiation – Anatomy & Physiology

  • Author: open.oregonstate.education

  • Rating: 4⭐ (773262 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 2⭐

  • Sumary: Main Objective:

  • Matching Result: The multipotent hematopoietic stem cells give rise to many different cell types, … Transcription factors are proteins that affect the binding of RNA …

  • Intro: 3.6 Cellular Differentiation – Anatomy & Physiology Learning Objectives Main Objective: Discuss how a cell differentiates and becomes more specialized By the end of this section, you will be able to: Discuss how the generalized cells of a developing embryo, or the stem cells of an adult organism, become differentiated…
  • Source: https://open.oregonstate.education/aandp/chapter/3-6-cellular-differentiation/

Frequently Asked Questions About name two factors that affect how and when cells differentiate

If you have questions that need to be answered about the topic name two factors that affect how and when cells differentiate, then this section may help you solve it.

What are the two elements influencing cell differentiation?

Environmental influences, cell signaling, and the stage of entity development all play a role in the process of cell differentiation in multicellular entities.

Which elements influence differentiation?

5 Key Elements that Control Cell Differentiation

  • Cytoplasmic influence or cell differentiation: General influence of cytoplasm on the early cell differentiation has been demonstrated by numerous experiments with egg cells. …
  • Protein turn-over: …
  • Cell-Cell interactions: …
  • Embryonic induction: …
  • Hormones:

What triggers cell differentiation?

Changes in gene expression, which result from the activation or repression of various transcription factors required for the expression of specific genes in the DNA by various signaling molecules in the environment, are the primary driver of cell differentiation.

What aspect of cell differentiation is most crucial?

The pathway that specific stem cells take as they differentiate appears to be determined by transcription factors, proteins that control which genes are transcribed in a cell.

What distinguishes the two different types of cell division?

Mitosis, the process of creating new body cells, and meiosis, the type of cell division that produces egg and sperm cells, are the two types of cell division. Most of the time when people use the term “cell division,” they are referring to mitosis, which is the process of creating new body cells.

What are the two things that prevent cell growth?

The rates of protein synthesis, the folding rates of its slowest proteins, and—for large cells—the rates of protein diffusion all serve as growth constraints on cells.

What two categories of differentiation are there?

You can use either divergent differentiation or convergent differentiation to accomplish these objectives.

Which two methods of differentiation are there?

Differentiation techniques include substitution, chain rule, and logarithm rule.

Quiz: What factors influence cell differentiation?

Distance and energy are the two factors that influence how cells differentiate.

What governs the differentiation of cells?

Cellular differentiation is controlled by gene expression.

What regulates the differentiation of cells?

Differentiation is regulated by a number of DNA binding proteins that are aberrantly expressed in PDAC and is a complex process involving the coordinated regulation of genes by a multitude of cellular pathways.

What prevents cells from differentiating?

Googletag. pubads(). definePassback(‘/14057847/RS_MPUtop’, [300, 250]). Animal cells are primarily limited to repair and replacement in later life, whereas Plant cells retain their ability to differentiate (specialize) throughout their life.

What regulates the differentiation of cells?

Cell signaling frequently regulates cellular differentiation, and growth factors are frequently the signal molecules that transmit information from cell to cell during the regulation of cellular differentiation.

Share this post