10 what event could increase the frequency of a mutation in a population over time? Ideas

Below is information and knowledge on the topic what event could increase the frequency of a mutation in a population over time? gather and compiled by the show.vn team. Along with other related topics like: what happens when a population is in hardy-weinberg equilibrium, Genetic drift, What is the founder effect, for a population to be in hardy-weinberg equilibrium, the population must, Gene flow, Gene flow example, Hardy-Weinberg equilibrium calculator, What causes genetic drift.


election, Genetic Drift, and Gene Flow Do Not Act in Isolation in Natural Populations

Natural selection, genetic drift, and gene flow are the mechanisms that cause changes in allele frequencies over time. When one or more of these forces are acting in a population, the population violates the Hardy-Weinberg assumptions, and evolution occurs. The Hardy-Weinberg Theorem thus provides a null model for the study of evolution, and the focus of population genetics is to understand the consequences of violating these assumptions.

Natural selection occurs when individuals with certain genotypes are more likely than individuals with other genotypes to survive and reproduce, and thus to pass on their alleles to the next generation. As Charles Darwin (1859) argued in On the Origin of Species, if the following conditions are met, natural selection must occur:

  1. There is variation among individuals within a population in some trait.
  2. This variation is heritable (i.e., there is a genetic basis to the variation, such that offspring tend to resemble their parents in this trait).
  3. Variation in this trait is associated with variation in fitness (the average net reproduction of individuals with a given genotype relative to that of individuals with other genotypes).

Directional selection leads to increase over time in the frequency of a favored allele. Consider three genotypes (AA, Aa and aa) that vary in fitness such that AA individuals produce, on average, more offspring than individuals of the other genotypes. In this case, assuming that the selective regime remains constant and that the action of selection is the only violation of Hardy-Weinberg assumptions, the A allele would become more common each generation and would eventually become fixed in the population. The rate at which an advantageous allele approaches fixation depends in part on the dominance relationships among alleles at the locus in question (Figure 1). The initial increase in frequency of a rare, advantageous, dominant allele is more rapid than that of a rare, advantageous, recessive allele because rare alleles are found mostly in heterozygotes. A new recessive mutation therefore can’t be “seen” by natural selection until it reaches a high enough frequency (perhaps via the random effects of genetic drift — see below) to start appearing in homozygotes. A new dominant mutation, however, is immediately visible to natural selection because its effect on fitness is seen in heterozygotes. Once an advantageous allele has reached a high frequency, deleterious alleles are necessarily rare and thus mostly present in heterozygotes, such that the final approach to fixation is more rapid for an advantageous recessive than for an advantageous dominant allele. As a consequence, natural selection is not as effective as one might naively expect it to be at eliminating deleterious recessive alleles from populations.

Allele-frequency change under directional selection favoring (a) a dominant advantageous allele and (b) a recessive advantageous allele

Figure 1: Allele-frequency change under directional selection favoring (a) a dominant advantageous allele and (b) a recessive advantageous allele

Balancing selection, in contrast to directional selection, maintains genetic polymorphism in populations. For example, if heterozygotes at a locus have higher fitness than homozygotes (a scenario known as heterozygote advantage or overdominance), natural selection will maintain multiple alleles at stable equilibrium frequencies. A stable polymorphism can also persist in a population if the fitness associated with a genotype decreases as that genotype increases in frequency (i.e., if there is negative frequency-dependent selection). It is important to note that heterozygote disadvantage (underdominance) and positive frequency-dependent selection can also act at a locus, but neither maintains multiple alleles in a population, and thus neither is a form of balancing selection.

Genetic drift results from the sampling error inherent in the transmission of gametes by individuals in a finite population. The gamete pool of a population in generation t is the total pool of eggs and sperm produced by the individuals in that generation. If the gamete pool were infinite in size, and if there were no selection or mutation acting at a locus with two alleles (A and a), we would expect the proportion of gametes containing the A allele to exactly equal the frequency of A, and the proportion of gametes containing a to equal the frequency of a. Compare this situation to tossing a fair coin. If you were to toss a coin an infinite number of times, the proportion of heads would be 0.50, and the proportion of tails would be 0.50. If you toss a coin only 10 times, however, you shouldn’t be too surprised to get 7 heads and 3 tails. This deviation from the expected head and tail frequencies is due to sampling error. The more times you toss the coin, the closer these frequencies should come to 0.50 because sampling error decreases as sample size increases.

Read More:  10 how could you separate magnesium chloride from silver chloride Ideas

In a finite population, the adults in generation t will pass on a finite number of gametes to produce the offspring in generation t + 1. The allele frequencies in this gamete pool will generally deviate from the population frequencies in generation t because of sampling error (again, assuming there is no selection at the locus). Allele frequencies will thus change over time in this population due to chance events — that is, the population will undergo genetic drift. The smaller the population size (N), the more important the effect of genetic drift. In practice, when modeling the effects of drift, we must consider effective population size (Ne), which is essentially the number of breeding individuals, and may differ from the census size, N, under various scenarios, including unequal sex ratio, certain mating structures, and temporal fluctuations in population size.

At a locus with multiple neutral alleles (alleles that are identical in their effects on fitness), genetic drift leads to fixation of one of the alleles in a population and thus to the loss of other alleles, such that heterozygosity in the population decays to zero. At any given time, the probability that one of these neutral alleles will eventually be fixed equals that allele’s frequency in the population. We can think about this issue in terms of multiple replicate populations, each of which represents a deme (subpopulation) within a metapopulation (collection of demes). Given 10 finite demes of equal Ne, each with a starting frequency of the A allele of 0.5, we would expect eventual fixation of A in 5 demes, and eventual loss of A in 5 demes. Our observations are likely to deviate from those expectations to some extent because we are considering a finite number of demes (Figure 2). Genetic drift thus removes genetic variation within demes but leads to differentiation among demes, completely through random changes in allele frequencies.

Simulations of allele-frequency change in 10 replicate populations (N = 20)

Figure 2: Simulations of allele-frequency change in 10 replicate populations (N = 20)

Since the initial frequency of the A allele = 0.5, we expect A to be fixed in 5 populations and lost in 5 populations, but our observations deviate from expectations because of the finite number of populations. In this run of simulations, we see 7 instances of fixation (p = 1), 2 instances of loss (p = 0), and one instance in which there are still two alleles after 100 generations. In this last population, A would eventually reach fixation or loss.

Gene flow is the movement of genes into or out of a population. Such movement may be due to migration of individual organisms that reproduce in their new populations, or to the movement of gametes (e.g., as a consequence of pollen transfer among plants). In the absence of natural selection and genetic drift, gene flow leads to genetic homogeneity among demes within a metapopulation, such that, for a given locus, allele frequencies will reach equilibrium values equal to the average frequencies across the metapopulation. In contrast, restricted gene flow promotes population divergence via selection and drift, which, if persistent, can lead to speciation.

Natural selection, genetic drift and gene flow do not act in isolation, so we must consider how the interplay among these mechanisms influences evolutionary trajectories in natural populations. This issue is crucially important to conservation geneticists, who grapple with the implications of these evolutionary processes as they design reserves and model the population dynamics of threatened species in fragmented habitats. All real populations are finite, and thus subject to the effects of genetic drift. In an infinite population, we expect directional selection to eventually fix an advantageous allele, but this will not necessarily happen in a finite population, because the effects of drift can overcome the effects of selection if selection is weak and/or the population is small. Loss of genetic variation due to drift is of particular concern in small, threatened populations, in which fixation of deleterious alleles can reduce population viability and raise the risk of extinction. Even if conservation efforts boost population growth, low heterozygosity is likely to persist, since bottlenecks (periods of reduced population size) have a more pronounced influence on Ne than periods of larger population size.

We have already seen that genetic drift leads to differentiation among demes within a metapopulation. If we assume a simple model in which individuals have equal probabilities of dispersing among all demes (each of effective size Ne) within a metapopulation, then the migration rate (m) is the fraction of gene copies within a deme introduced via immigration per generation. According to a commonly used approximation, the introduction of only one migrant per generation (Nem = 1) constitutes sufficient gene flow to counteract the diversifying effects of genetic drift in a metapopulation.

Natural selection can produce genetic variation among demes within a metapopulation if different selective pressures prevail in different demes. If Ne is large enough to discount the effects of genetic drift, then we expect directional selection to fix the favored allele within a given focal deme. However, the continual introduction, via gene flow, of alleles that are advantageous in other demes but deleterious in the focal deme, can counteract the effects of selection. In this scenario, the deleterious allele will remain at an intermediate equilibrium frequency that reflects the balance between gene flow and natural selection.

Extra Information About what event could increase the frequency of a mutation in a population over time? That You May Find Interested

If the information we provide above is not enough, you may find more below here.

Read More:  10 how to find mechanical advantage of a lever Ideas

Natural Selection, Genetic Drift, and Gene Flow Do Not Act in …

Natural Selection, Genetic Drift, and Gene Flow Do Not Act in ...

  • Author: nature.com

  • Rating: 4⭐ (710635 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 3⭐

  • Sumary: In natural populations, the mechanisms of evolution do not act in isolation. This is crucially important to conservation geneticists, who grapple with the implications of these evolutionary processes as they design reserves and model the population dynamics of threatened species in fragmented habitats.

  • Matching Result: Allele frequencies will thus change over time in this population due to chance events — that is, the population will undergo genetic drift.

  • Intro: Natural Selection, Genetic Drift, and Gene Flow Do Not Act in Isolation in Natural Populations Natural selection, genetic drift, and gene flow are the mechanisms that cause changes in allele frequencies over time. When one or more of these forces are acting in a population, the population violates the Hardy-Weinberg…
  • Source: https://www.nature.com/scitable/knowledge/library/natural-selection-genetic-drift-and-gene-flow-15186648/

The Hardy-Weinberg Principle | Learn Science at Scitable

The Hardy-Weinberg Principle | Learn Science at Scitable

  • Author: nature.com

  • Rating: 4⭐ (710635 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 3⭐

  • Sumary: The Hardy-Weinberg theorem characterizes the distributions of genotype frequencies in populations that are not evolving, and is thus the fundamental null model for population genetics.

  • Matching Result: Selection, mutation, migration, and genetic drift are the mechanisms that effect changes in allele frequencies, and when one or more of these forces are acting, …

  • Intro: The Hardy-Weinberg PrincipleThe Hardy-Weinberg theorem characterizes the distributions of genotype frequencies in populations that are not evolving, and is thus the fundamental null model for population genetics. Basic Mendelian Genetics Under the now-discredited theory of blending inheritance, the hereditary material was conceived as a fluid that combines the traits from…
  • Source: https://www.nature.com/scitable/knowledge/library/the-hardy-weinberg-principle-13235724/

Genetic drift (article) | Natural selection – Khan Academy

Genetic drift (article) | Natural selection - Khan Academy

  • Author: khanacademy.org

  • Rating: 4⭐ (710635 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 3⭐

  • Sumary: Learn for free about math, art, computer programming, economics, physics, chemistry, biology, medicine, finance, history, and more. Khan Academy is a nonprofit with the mission of providing a free, world-class education for anyone, anywhere.

  • Matching Result: Genetic drift is a mechanism of evolution in which allele frequencies of a population change over generations due to chance (sampling error). Genetic drift …

  • Intro: Genetic drift (article) | Natural selection | Khan Academy If you’re seeing this message, it means we’re having trouble loading external resources on our website. If you’re behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.
  • Source: https://www.khanacademy.org/science/ap-biology/natural-selection/population-genetics/a/genetic-drift-founder-bottleneck

Mechanisms of evolution (article) | Khan Academy

Mechanisms of evolution (article) | Khan Academy

  • Author: khanacademy.org

  • Rating: 4⭐ (710635 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 3⭐

  • Sumary: Learn for free about math, art, computer programming, economics, physics, chemistry, biology, medicine, finance, history, and more. Khan Academy is a nonprofit with the mission of providing a free, world-class education…

  • Matching Result: Formally, evolution is a change in allele frequencies in a population over time, so a population in Hardy-Weinberg equilibrium is not evolving.

  • Intro: Mechanisms of evolution (article) | Khan Academy If you’re seeing this message, it means we’re having trouble loading external resources on our website. If you’re behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.
  • Source: https://www.khanacademy.org/science/ap-biology/natural-selection/hardy-weinberg-equilibrium/a/hardy-weinberg-mechanisms-of-evolution

Mutation Rate – an overview | ScienceDirect Topics

Mutation Rate - an overview | ScienceDirect Topics

  • Author: sciencedirect.com

  • Rating: 4⭐ (710635 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 3⭐

  • Sumary: Whereas increase of mutation rates and loss of viability and fertility may undermine impacted populations, the continuous selective pressure linked to the presence of pollutants (genotoxicants or not) represents a potential menace for the adaptability of species to the changing environment…

  • Matching Result: Mutation frequency is a very different measurement, and describes the amount of sequence variation seen in a virus population, generally after a given amount …

  • Intro: Mutation Rate – an overviewWhereas increase of mutation rates and loss of viability and fertility may undermine impacted populations, the continuous selective pressure linked to the presence of pollutants (genotoxicants or not) represents a potential menace for the adaptability of species to the changing environment at the global scale.From: Encyclopedia…
  • Source: https://www.sciencedirect.com/topics/medicine-and-dentistry/mutation-rate

Genetic Drift – an overview | ScienceDirect Topics

Genetic Drift - an overview | ScienceDirect Topics

  • Author: sciencedirect.com

  • Rating: 4⭐ (710635 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 3⭐

  • Sumary: Genetic drift is the process by which deviations in expected allele frequencies develop in finite populations over time as a function of statistical sampling of genes from one generation to the next (as opposed to deviations that may develop in finite populations due to selection, mutation, or admixture).

  • Matching Result: Chance events can have a much greater effect on allele frequencies in a small population than in a large one. For example, when a new mutation occurs in a …

  • Intro: Genetic Drift – an overviewGenetic drift is the process by which deviations in expected allele frequencies develop in finite populations over time as a function of statistical sampling of genes from one generation to the next (as opposed to deviations that may develop in finite populations due to selection, mutation,…
  • Source: https://www.sciencedirect.com/topics/neuroscience/genetic-drift

Microevolution

Microevolution

  • Author: www2.nau.edu

  • Rating: 4⭐ (710635 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 3⭐

  • Sumary: Microevolution is defined as changes in the frequency of a gene in a population. These are subtle changes that can occur in very short periods of time, and may not be visible…

  • Matching Result: Gene Flow (Migration): when there is mixing of genes from previously isolated populations that have diverged, this can rapidly change gene frequencies in the …

  • Intro: Microevolution Microevolution is defined as changes in the frequency of a gene in a population. These are subtle changes that can occur in very short periods of time, and may not be visible to a casual observer. Mathematically, we can determine whether microevolution is occuring by assessing whether a population…
  • Source: https://www2.nau.edu/lrm22/lessons/evolution_notes/microevolution.html

Population and Evolutionary Genetics

Population and Evolutionary Genetics

  • Author: ndsu.edu

  • Rating: 4⭐ (710635 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 3⭐

  • Sumary: Deriving Genotypic and Allelic Frequencies

  • Matching Result: If fitness is improved by a mutation, then frequencies of that allele will increase from generation to generation. The mutation could be a change in one allele …

  • Intro: Population and Evolutionary Genetics Population Variability Deriving Genotypic and Allelic Frequencies Hardy-Weinberg Equilibrium Evolutionary Genetics Darwin’s Theory of Natural Selection Speciation Study Questions Population and Evolutiionary Genetics Overheads Population and Evolutiionary Genetics WWW Links Genetic Topics Because a genetic population is described as the sum of gene (or allelic) frequencies…
  • Source: https://www.ndsu.edu/pubweb/~mcclean/plsc431/popgen/popgen4.htm

Read More:  10 which two statements best show the effect of the congress of vienna on europe? Ideas

High mutation rates limit evolutionary adaptation in … – PLOS

High mutation rates limit evolutionary adaptation in ... - PLOS

  • Author: journals.plos.org

  • Rating: 4⭐ (710635 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 3⭐

  • Sumary: Author summary Mutation is of central importance in biology. It creates genetic variation, the raw material of evolution by natural selection, It can improve traits and organisms, but can also lead to phenomena like cancerous cells and antibiotic resistant pathogens. Increasing the mutation rate can accelerate…

  • Matching Result: by K Sprouffske · 2018 · Cited by 69 — In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase …

  • Intro: High mutation rates limit evolutionary adaptation in Escherichia coli Loading metrics Open Access Peer-reviewed Research Article High mutation rates limit evolutionary adaptation in Escherichia coli Kathleen Sprouffske,  José Aguilar-Rodríguez,  Paul Sniegowski,  Andreas Wagner x Published: April 27, 2018 https://doi.org/10.1371/journal.pgen.1007324 Figures AbstractMutation is fundamental to evolution, because it generates the genetic…
  • Source: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007324

Mutation Frequencies and Antibiotic Resistance – PMC – NCBI

Mutation Frequencies and Antibiotic Resistance - PMC - NCBI

  • Author: ncbi.nlm.nih.gov

  • Rating: 4⭐ (710635 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 3⭐

  • Sumary: Antimicrob Agents Chemother. 2000 Jul; 44(7): 1771–1777.

  • Matching Result: by JL Martinez · 2000 · Cited by 860 — Differing with this concept, the frequency of mutation measures all the mutants present in a given population, irrespective of whether the mutation events …

  • Intro: Mutation Frequencies and Antibiotic Resistance Journal List Antimicrob Agents Chemother v.44(7); 2000 Jul PMC89960 Antimicrob Agents Chemother. 2000 Jul; 44(7): 1771–1777. MULTIPLE DIMENSIONS OF THE MUTATION RATEAntibiotic resistance can be achieved by horizontal acquisition of resistance genes (carried by plasmids or transposons), by recombination of foreign DNA into the chromosome,…
  • Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC89960/

Frequently Asked Questions About what event could increase the frequency of a mutation in a population over time?

If you have questions that need to be answered about the topic what event could increase the frequency of a mutation in a population over time?, then this section may help you solve it.

What would increase the likelihood of genetic mutations?

Mutation rates across individuals are also influenced by variation in the activity of specific cellular processes, which can lead to increased mutation rates in cancer genomes due to environmental exposures such as tobacco smoke, UV light, and aristolochic acid.

What might raise the mutational rate?

The rate of mutation can be accelerated by environmental factors like b>UV radiation, X-rays, gamma rays, and certain types of chemicals like bromine. Mutations occur spontaneously.

What conditions could cause a mutation in a population to become more common quickly?

If two of an individual’s offspring carry the mutation, then the mutation will quickly spread throughout the population.

How might genetic variation in a population be altered by mutation?

How Do Mutations Affect Allele Frequencies? Mutations are a major evolutionary force that generates new gene variations by b>adding new alleles into a gene pool/b>, which results in a change in the frequency of certain allele combinations in the population, causing the population to evolve over time.

What elements influence gene frequency?

Natural selection, random genetic drift, migration (or gene flow), and mutation are some of the factors that disturb the natural equilibrium of gene frequencies.

Which of the subsequent can result in mutations?

DNA damage can be brought on by ionizing radiation, ultraviolet light, reactive oxygen species that are created in cells from molecule oxygen, and DNA mutations.

Which three factors lead to mutations?

As a result of exposure to high-energy electromagnetic radiation (such as ultraviolet light or X-rays), particle radiation, or highly reactive chemicals in the environment, or as a result of accidents occurring during the normal chemical transactions of DNA, most frequently during replication, mutations can occur.

What are the three things that lead to mutations?

Mutations can occur spontaneously or as a result of environmental factors called mutagens, which include radiation, chemicals, and infectious agents.

Can radiation speed up the mutation process?

Ionizing radiation causes mutations that are passed down from generation to generation and harms the genetic material in reproductive cells.

What are the four main factors that can affect a population’s allele frequency?

From the theorem, we can infer factors that cause allele frequencies to change. These factors are the “forces of evolution.” There are four such forces: mutation, gene flow, genetic drift, and natural selection.

What are the four mutational causes?

Germline mutations (occurring in eggs and sperm) can be passed on to offspring, whereas somatic mutations (occurring in body cells) are not. Mutations can result from errors in DNA replication during cell division, exposure to mutagens, or a viral infection.

What three mechanisms result in changes in allele frequency?

Natural selection, genetic drift (chance events that alter allele frequencies), and gene flow (the transfer of alleles between populations) are the three mechanisms that can cause changes in allele frequencies.

What are three examples of mutation-causing factors?

In conclusion, environmental factors known as mutagens, such as radiation, chemicals, and infectious agents, are what cause mutations.

Quizlet: What can cause a mutation?

Sometimes, mutations happen when a cell copies its DNA during replication in preparation for cell division. Other times, mutations happen when a cell copies its DNA during replication in preparation for cell division.

Share this post