10 which of the following forms of light can be observed with telescopes at sea level Ideas

Below is information and knowledge on the topic which of the following forms of light can be observed with telescopes at sea level gather and compiled by the show.vn team. Along with other related topics like: The James Webb Space Telescope is designed primarily to observe, Which of the following will be a result of increasing the angular resolution of a telescope, what do astronomers mean by light pollution?, If you had only one telescope and wanted to take both, if our eyes were sensitive only to x rays, the world would appear, what forms of light must be observed in space?, Which two regions of the electromagnetic spectrum can only be observed with space based telescopes, Which type of telescope would give the best results if built on the Earth’s surface at sea level.


ries Across the Electromagnetic Spectrum

Observatories Across the Electromagnetic Spectrum

Astronomers use a number of telescopes sensitive to different parts
of the electromagnetic spectrum to study objects in space. Even though
all light is fundamentally the same thing, the way that astronomers
observe light depends on the portion of the spectrum they wish to study.

For example, different detectors are sensitive to different wavelengths
of light. In addition, not all light can get through the Earth’s
atmosphere, so for some wavelengths we have to use telescopes
aboard satellites. Even the way we collect the light can change
depending on the wavelength. Here we briefly introduce observatories
used for each band of the EM spectrum.

illustration showing different telescopes that observe each band 
	of the electromagnetic spectrum

A sample of telescopes (operating as of
February 2013) operating at wavelengths across the electromagnetic
spectrum. Observatories are placed above or below the portion of the
EM spectrum that their primary instrument(s) observe.

The represented observatories are: HESS,
Fermi and Swift for gamma-ray, NuSTAR and Chandra for X-ray, GALEX
for ultraviolet, Kepler, Hubble, Keck (I and II), SALT, and Gemini
(South) for visible, Spitzer, Herschel, and Sofia for infrared,
Planck and CARMA for microwave, Spektr-R, Greenbank, and VLA for
radio. Click
here to see this image with the observatories labeled.

(Credit: Observatory images from NASA,
ESA (Herschel and Planck), Lavochkin Association (Specktr-R), HESS
Collaboration (HESS), Salt Foundation (SALT), Rick Peterson/WMKO
(Keck), Germini Observatory/AURA (Gemini), CARMA team (CARMA), and
NRAO/AUI (Greenbank and VLA); background image from NASA)

*
Try your hand at building an observatory with the Build It Yourself: Satellite! Game


Radio observatories

artist concept of space interferometry with the Spectr-R radio observatory

This artist’s conception shows Earth and
the Spektr-R spacecraft with an imagined radio antenna that is
created by combining Spektr-R’s data with that of Earth-bound radio
telescopes. (Credit: Lavochkin Association)

Radio waves can make it through the Earth’s atmosphere without significant obstacles.
In fact, radio telescopes can observe even on cloudy days. In principle, then, we don’t
need to put radio telescopes in space. However, space-based radio observatories
complement Earth-bound radio telescopes in some important ways.

A special technique used in radio astronomy is called “interferometry.” Radio
astronomers can combine data from two telescopes that are very far apart and create images
that have the same resolution as if they had a single telescope as big as the distance
between the two telescopes. This means radio telescope arrays can see incredibly small
details. One example is the Very Large Baseline Array (VLBA), which consists of 10 radio
observatories that reach from Hawaii to Puerto Rico, nearly a third of the way around the
world.

Read More:  10 how does the use of the term civilization by historians differ from that of popular usage Ideas

By putting a radio telescope in orbit around Earth, radio astronomers can make images
as if they had a radio telescope the size of the entire planet. The first mission
dedicated to space interferometry was the Japanese HALCA mission which ran from 1997 to
2005. The second dedicated mission is the Russian Spektr-R satellite, which launched in
2011.


Microwave observatories

artist concept of the Planck observatory

Artist’s conception of the European Space
Agency’s (ESA’s) Planck observatory cruising to its
orbit. (Credit: ESA/D. Ducros)

The Earth’s atmosphere blocks much of the light in the microwave band, so astronomers
use satellite-based telescopes to observe cosmic microwaves. The entire sky is a source
of microwaves in every direction, most often referred to as the cosmic microwave
background (or CMB for short). These microwaves are the remnant of the Big Bang, a term
used to describe the early universe.

A very long time ago, all the matter in existence was scrunched together in a very
small, hot ball. The ball expanded outward and became our universe as it cooled. Since the
Big Bang, which is estimated to have taken place 13.8 billion years ago, it has cooled all
the way to just three degrees above absolute zero. It is this “three degrees” that we
measure as the microwave background.

The first precise measurements of the temperature of the microwave background across
the entire sky was done by the Cosmic Background Explorer (COBE) satellite from 1989 to
1993. Since then, the Wilkinson Microwave Anisotropy Probe (WMAP) refined the COBE
measurements, operating from 2001 to 2010. More recently, the Planck mission launched
in 2009 and further improved astronomer’s understanding of the CMB.

* Tell me more about WMAP


Infrared observatories

artist concept SOFIA flying at sunset

Artist’s conception of SOFIA flying at
sunset (Credit: NASA)

photograph of the Keck I and II domes

Photograph of the Keck I and II domes at
dawn; the Keck telescopes operate in visible and infrared wavelengths.
(Credit: Rick Peterson/WMKO)

Infrared astronomy has to overcome a number of challenges. While some infrared
radiation can make it through Earth’s atmosphere, the longer wavelengths are blocked. But
that’s not the biggest challenge – everything that has heat emits infrared light.
That means that the atmosphere, the telescope, and even the infrared detectors themselves
all emit infrared light.

Ground-based infrared telescopes reside at high altitudes in dry climates in an effort
to get above much of the water vapor in the atmosphere that absorbs infrared. However,
ground-based infrared observatories must still account for the atmosphere in their
measurements. To do this, the infrared emission from the atmosphere is measured at the
same time as the measurement of the cosmic object being observed. Then, the emission from
the atmosphere can be subtracted to get an accurate measurement of the cosmic object. The
telescopes, for both ground-based and space/airborne observatories, are also designed to
limit the spurious infrared radiation from reaching the detector, and the detectors are
cooled to limit their infrared emissions.

In 2003, NASA
launched the Spitzer Space Telescope into an earth-trailing,
heliocentric orbit, where it did not have to contend with the comparatively warm
environment in near-Earth space. Another major infrared facility is
the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA carries a large
telescope inside a 747 aircraft flying at an altitude sufficient to get it well above most
of the Earth’s infrared absorbing atmosphere.

Scheduled for launch in 2018, the James Webb Space Telescope is a
large, space-based observatory, that is optimized for infrared
wavelengths. Webb will be able to look further back in time to find the
first galaxies that formed in the early Universe and to peer inside dust
clouds where stars and planetary systems are forming today. Webb will
also be in a heliocentric orbit at the second Lagrange point. To keep
the mirror and instruments cold (and allow the telescope to detect the
faintest of heat signals from distant objects), it has a giant
sunshield, which will block the light and heat from the Earth, Sun, and
Moon.


Visible spectrum observatories

photo of the Hubble Space Telescope taken by astronauts during Servicing Mission 4

The Hubble Space Telescope just after it
was captures by the Space Shuttle Atlantis to be serviced in 2009.
(Credit: NASA)

Read More:  10 for what value of the constant c is the function f continuous on (−∞,∞) where Ideas

Visible light can pass right through our atmosphere, which is why astronomy is as old
as humanity. Ancient humans could look up at the night sky and see the stars above them.
Today, there is an army of ground-based telescope facilities for visible astronomy (also
called “optical astronomy”). However, there are limits to ground-based optical astronomy.
As light passes through the atmosphere, it is distorted by the turbulence within the
air. Astronomers can improve their chances of a good image by putting
observatories on mountain-tops (above some of the atmosphere), but there will still be
limits to how crisp their images will be, especially for faint sources.

Visible-light observatories in space avoid the turbulence of the Earth’s atmosphere. In
addition, they can observe a somewhat wider portion of the electromagnetic spectrum, in
particular ultraviolet light that is absorbed by the Earth’s atmosphere. The Hubble Space
Telescope is perhaps the most famous optical telescope in orbit. Also in orbit is the
Kepler observatory. Kepler is using visible light to survey a portion of the Milky Way
galaxy to discover planetary systems. The Swift satellite also carries an UltraViolet and
Optical Telescope (the UVOT) to perform observations of
gamma-ray bursts.


Ultraviolet observatories

Artist's conception of the GALEX satellite in orbit

Artist’s concept of the GALEX satellite in
orbit. (Credit: NASA/JPL-Caltech)

The Earth’s atmosphere absorbs ultraviolet light, so ultraviolet astronomy must be done
using telescopes in space. Other than carefully-select materials for filters, a
ultraviolet telescope is much like a regular visible light telescope. The primary
difference being that the ultraviolet telescope must be above Earth’s atmosphere to
observe cosmic sources.

The GALEX observatory was the most recent dedicated ultraviolet
observatory. It was launched in 2003 and shut down operations in 2013.
Its goal was to observe the history of star formation in our Universe in
ultraviolet wavelengths, and it observed over a half-billion galaxies
going back to when our Universe was just about 3 billion years old.

The Hubble Space Telescope and the UltraViolet and Optical Telescope
on Swift can both perform a great deal of observing at ultraviolet
wavelengths, but they only cover a portion of the spectrum that GALEX
observes.


X-ray observatories

Artist's conception of the NuSTAR satellite in orbit

Artist’s concept of the NuSTAR satellite.
(Credit: NASA/JPL-Caltech)

X-ray wavelengths are another portion of the electromagnetic spectrum that are blocked
by Earth’s atmosphere. X-rays also pose a particular challenge because they are so small
and energetic that they don’t bounce off mirrors like lower-energy forms of light.
Instead, they pass right through. Unless they just barely graze the surface of the
mirror. (Read more about how X-rays are focused on the
X-ray
Telescope Introduction page.)

Focusing X-ray telescope require long focal lengths. In other words, the
mirrors where light enters the telescope must be separated from the X-ray detectors by several meters. However. launching such a large observatory is costly and limits the launch vehicles to only the most powerful rockets (the Space Shuttle in the case of the Chandra X-ray Observatory).

In 2012, the Nuclear Spectroscopic Telescope Array (or NuSTAR for short), solved this
problem by designing an observatory with a deployable mast. In other words, NuSTAR was
designed with its mirror module and detector module on a mast, or boom, that could be
extended once it was in orbit. By doing that, NuSTAR could be launched on a low-cost
rocket.


Gamma-ray observatories

Artist's conception of the Fermi satellite

Artist’s concept of the Fermi satellite.
(Credit: NASA)

Photo of one of the HESS telescopes

One of the HESS telescopes. (Credit: HESS Collaboration)

Not only are gamma-rays blocked by Earth’s atmosphere, but they are
even harder than X-rays to focus. In fact, so far, there have been no
focusing gamma-ray telescopes. Instead, astronomers rely on
alternate ways to determine where in the sky gamma-rays are produced.
This can be properties of the detector or using special “masks” that
cast gamma-ray shadows on the detector.

* Tell me more about Gamma-ray Telescopes and Detectors

The Swift satellite was launched in 2004 to help solve the mystery of gamma-ray bursts.
Swift has a gamma-ray detector that can observe half the sky at a time, and if it detects
a gamma-ray burst, the satellite can quickly point its X-ray and optical telescopes in the
direction of the burst. The Fermi Space Telescope was launched in 2008 and is designed to
study energetic phenomena from a variety of cosmic sources, including pulsars, black
holes, active galaxies, diffuse gamma-ray emission and gamma-ray bursts.

Read More:  10 how does environmental science help us understand the natural world Ideas

It might be surprising to know that astronomers can use ground-based astronomy to
detect the highest energy gamma-rays. For these gamma-rays, the telescopes don’t detect
the gamma-rays directly. Instead, they use the atmosphere itself as a detector. The HESS
array has been in operation for over 10 years. The array began with four telescopes
arranged in a square, and recently added the HESS II telescope to its ranks.

* Tell me more about detecting gamma-rays using the atmosphere

Updated: February 2013

Extra Information About which of the following forms of light can be observed with telescopes at sea level That You May Find Interested

If the information we provide above is not enough, you may find more below here.

Observatories Across the Electromagnetic Spectrum

Observatories Across the Electromagnetic Spectrum

  • Author: imagine.gsfc.nasa.gov

  • Rating: 5⭐ (216410 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 3⭐

  • Sumary: Astronomers use a number of telescopes sensitive to different parts of the electromagnetic spectrum to study objects in space. Even though all light is fundamentally the same thing, the way that astronomers observe light depends on the portion of the spectrum they wish to…

  • Matching Result: The Earth’s atmosphere absorbs ultraviolet light, so ultraviolet astronomy must be done using telescopes in space. Other than carefully-select materials for …

  • Intro: Observatories Across the Electromagnetic Spectrum Observatories Across the Electromagnetic Spectrum Astronomers use a number of telescopes sensitive to different parts of the electromagnetic spectrum to study objects in space. Even though all light is fundamentally the same thing, the way that astronomers observe light depends on the portion of the…
  • Source: https://imagine.gsfc.nasa.gov/science/toolbox/emspectrum_observatories1.html

Frequently Asked Questions About which of the following forms of light can be observed with telescopes at sea level

If you have questions that need to be answered about the topic which of the following forms of light can be observed with telescopes at sea level, then this section may help you solve it.

What kinds of light from space can be seen on the surface of the Earth?

Because the earth is encircled by a layer of gases known as the atmosphere, only a portion of the visible light, near-infrared rays, and radio waves from space are able to reach us.

What kind of telescope is capable of observing invisible light?

Beyond Visible Light The James Webb Space Telescope (JWST) detects near-infrared and mid-infrared wavelengths, the light beyond the red end of the visible spectrum, and can be used to reveal otherwise hidden regions of space.

What kind of light can the telescope see?

The Hubble Space Telescope can detect a portion of infrared and ultraviolet wavelengths in addition to visible light, and telescopes are designed to capture different portions of this spectrum, providing more information than the human eye could detect on its own.

Can a telescope see every kind of light?

The electromagnetic spectrum and telescopes: There are radio telescopes, infrared telescopes, optical (visible light) telescopes, and so on, and each type of telescope can only detect one region of the electromagnetic spectrum.

What can be seen through a telescope?

The Moon is fantastic because it is our nearest neighbor and it is big and bright. Telescopes are wonderful because they allow you to peer into the vast unknown and see stars, planets, nebula, and galaxies far, far away.

These telescopes are intended to identify what types of light.

The Chandra X-ray Observatory uses X-ray optics to observe distant objects in the X-ray spectrum. Space telescopes can carry instruments to observe objects emitting various types of electromagnetic radiation, such as visible, infrared, or ultraviolet light; gamma rays; or x-rays.

What is the telescope’s light source?

The Short Answer: The shape of the mirror or lens in a telescope concentrates light, which is what we see when we look into a telescope. A telescope is a tool that astronomers use to see distant objects. However, most telescopes today use curved mirrors to gather light from the night sky.

Share this post