10 which situation occurs after the creation of a new allele? Ideas

Below is information and knowledge on the topic which situation occurs after the creation of a new allele? gather and compiled by the show.vn team. Along with other related topics like: which example discusses behavioral isolation?, what fossil data supports the hypothesis of punctuated equilibrium?, What prevents mules from having offspring, Genetic drift, what situation results from a postfertilization barrier to reproduction?, What is the founder effect, How are populations involved in speciation, Bottleneck effect.


election, Genetic Drift, and Gene Flow Do Not Act in Isolation in Natural Populations

Natural selection, genetic drift, and gene flow are the mechanisms that cause changes in allele frequencies over time. When one or more of these forces are acting in a population, the population violates the Hardy-Weinberg assumptions, and evolution occurs. The Hardy-Weinberg Theorem thus provides a null model for the study of evolution, and the focus of population genetics is to understand the consequences of violating these assumptions.

Natural selection occurs when individuals with certain genotypes are more likely than individuals with other genotypes to survive and reproduce, and thus to pass on their alleles to the next generation. As Charles Darwin (1859) argued in On the Origin of Species, if the following conditions are met, natural selection must occur:

  1. There is variation among individuals within a population in some trait.
  2. This variation is heritable (i.e., there is a genetic basis to the variation, such that offspring tend to resemble their parents in this trait).
  3. Variation in this trait is associated with variation in fitness (the average net reproduction of individuals with a given genotype relative to that of individuals with other genotypes).

Directional selection leads to increase over time in the frequency of a favored allele. Consider three genotypes (AA, Aa and aa) that vary in fitness such that AA individuals produce, on average, more offspring than individuals of the other genotypes. In this case, assuming that the selective regime remains constant and that the action of selection is the only violation of Hardy-Weinberg assumptions, the A allele would become more common each generation and would eventually become fixed in the population. The rate at which an advantageous allele approaches fixation depends in part on the dominance relationships among alleles at the locus in question (Figure 1). The initial increase in frequency of a rare, advantageous, dominant allele is more rapid than that of a rare, advantageous, recessive allele because rare alleles are found mostly in heterozygotes. A new recessive mutation therefore can’t be “seen” by natural selection until it reaches a high enough frequency (perhaps via the random effects of genetic drift — see below) to start appearing in homozygotes. A new dominant mutation, however, is immediately visible to natural selection because its effect on fitness is seen in heterozygotes. Once an advantageous allele has reached a high frequency, deleterious alleles are necessarily rare and thus mostly present in heterozygotes, such that the final approach to fixation is more rapid for an advantageous recessive than for an advantageous dominant allele. As a consequence, natural selection is not as effective as one might naively expect it to be at eliminating deleterious recessive alleles from populations.

Allele-frequency change under directional selection favoring (a) a dominant advantageous allele and (b) a recessive advantageous allele

Figure 1: Allele-frequency change under directional selection favoring (a) a dominant advantageous allele and (b) a recessive advantageous allele

Balancing selection, in contrast to directional selection, maintains genetic polymorphism in populations. For example, if heterozygotes at a locus have higher fitness than homozygotes (a scenario known as heterozygote advantage or overdominance), natural selection will maintain multiple alleles at stable equilibrium frequencies. A stable polymorphism can also persist in a population if the fitness associated with a genotype decreases as that genotype increases in frequency (i.e., if there is negative frequency-dependent selection). It is important to note that heterozygote disadvantage (underdominance) and positive frequency-dependent selection can also act at a locus, but neither maintains multiple alleles in a population, and thus neither is a form of balancing selection.

Genetic drift results from the sampling error inherent in the transmission of gametes by individuals in a finite population. The gamete pool of a population in generation t is the total pool of eggs and sperm produced by the individuals in that generation. If the gamete pool were infinite in size, and if there were no selection or mutation acting at a locus with two alleles (A and a), we would expect the proportion of gametes containing the A allele to exactly equal the frequency of A, and the proportion of gametes containing a to equal the frequency of a. Compare this situation to tossing a fair coin. If you were to toss a coin an infinite number of times, the proportion of heads would be 0.50, and the proportion of tails would be 0.50. If you toss a coin only 10 times, however, you shouldn’t be too surprised to get 7 heads and 3 tails. This deviation from the expected head and tail frequencies is due to sampling error. The more times you toss the coin, the closer these frequencies should come to 0.50 because sampling error decreases as sample size increases.

Read More:  10 what does this image most suggest about advertising techniques during the 1920s? Ideas

In a finite population, the adults in generation t will pass on a finite number of gametes to produce the offspring in generation t + 1. The allele frequencies in this gamete pool will generally deviate from the population frequencies in generation t because of sampling error (again, assuming there is no selection at the locus). Allele frequencies will thus change over time in this population due to chance events — that is, the population will undergo genetic drift. The smaller the population size (N), the more important the effect of genetic drift. In practice, when modeling the effects of drift, we must consider effective population size (Ne), which is essentially the number of breeding individuals, and may differ from the census size, N, under various scenarios, including unequal sex ratio, certain mating structures, and temporal fluctuations in population size.

At a locus with multiple neutral alleles (alleles that are identical in their effects on fitness), genetic drift leads to fixation of one of the alleles in a population and thus to the loss of other alleles, such that heterozygosity in the population decays to zero. At any given time, the probability that one of these neutral alleles will eventually be fixed equals that allele’s frequency in the population. We can think about this issue in terms of multiple replicate populations, each of which represents a deme (subpopulation) within a metapopulation (collection of demes). Given 10 finite demes of equal Ne, each with a starting frequency of the A allele of 0.5, we would expect eventual fixation of A in 5 demes, and eventual loss of A in 5 demes. Our observations are likely to deviate from those expectations to some extent because we are considering a finite number of demes (Figure 2). Genetic drift thus removes genetic variation within demes but leads to differentiation among demes, completely through random changes in allele frequencies.

Simulations of allele-frequency change in 10 replicate populations (N = 20)

Figure 2: Simulations of allele-frequency change in 10 replicate populations (N = 20)

Since the initial frequency of the A allele = 0.5, we expect A to be fixed in 5 populations and lost in 5 populations, but our observations deviate from expectations because of the finite number of populations. In this run of simulations, we see 7 instances of fixation (p = 1), 2 instances of loss (p = 0), and one instance in which there are still two alleles after 100 generations. In this last population, A would eventually reach fixation or loss.

Gene flow is the movement of genes into or out of a population. Such movement may be due to migration of individual organisms that reproduce in their new populations, or to the movement of gametes (e.g., as a consequence of pollen transfer among plants). In the absence of natural selection and genetic drift, gene flow leads to genetic homogeneity among demes within a metapopulation, such that, for a given locus, allele frequencies will reach equilibrium values equal to the average frequencies across the metapopulation. In contrast, restricted gene flow promotes population divergence via selection and drift, which, if persistent, can lead to speciation.

Natural selection, genetic drift and gene flow do not act in isolation, so we must consider how the interplay among these mechanisms influences evolutionary trajectories in natural populations. This issue is crucially important to conservation geneticists, who grapple with the implications of these evolutionary processes as they design reserves and model the population dynamics of threatened species in fragmented habitats. All real populations are finite, and thus subject to the effects of genetic drift. In an infinite population, we expect directional selection to eventually fix an advantageous allele, but this will not necessarily happen in a finite population, because the effects of drift can overcome the effects of selection if selection is weak and/or the population is small. Loss of genetic variation due to drift is of particular concern in small, threatened populations, in which fixation of deleterious alleles can reduce population viability and raise the risk of extinction. Even if conservation efforts boost population growth, low heterozygosity is likely to persist, since bottlenecks (periods of reduced population size) have a more pronounced influence on Ne than periods of larger population size.

Read More:  10 structures that form from the cooling and hardening of magma beneath earth's surface are Ideas

We have already seen that genetic drift leads to differentiation among demes within a metapopulation. If we assume a simple model in which individuals have equal probabilities of dispersing among all demes (each of effective size Ne) within a metapopulation, then the migration rate (m) is the fraction of gene copies within a deme introduced via immigration per generation. According to a commonly used approximation, the introduction of only one migrant per generation (Nem = 1) constitutes sufficient gene flow to counteract the diversifying effects of genetic drift in a metapopulation.

Natural selection can produce genetic variation among demes within a metapopulation if different selective pressures prevail in different demes. If Ne is large enough to discount the effects of genetic drift, then we expect directional selection to fix the favored allele within a given focal deme. However, the continual introduction, via gene flow, of alleles that are advantageous in other demes but deleterious in the focal deme, can counteract the effects of selection. In this scenario, the deleterious allele will remain at an intermediate equilibrium frequency that reflects the balance between gene flow and natural selection.

Extra Information About which situation occurs after the creation of a new allele? That You May Find Interested

If the information we provide above is not enough, you may find more below here.

Natural Selection, Genetic Drift, and Gene Flow Do Not Act in …

Natural Selection, Genetic Drift, and Gene Flow Do Not Act in ...

  • Author: nature.com

  • Rating: 5⭐ (572048 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: In natural populations, the mechanisms of evolution do not act in isolation. This is crucially important to conservation geneticists, who grapple with the implications of these evolutionary processes as they…

  • Matching Result: Natural selection occurs when individuals with certain genotypes are more likely than individuals with other genotypes to survive and reproduce, and thus to …

  • Intro: Natural Selection, Genetic Drift, and Gene Flow Do Not Act in Isolation in Natural Populations Natural selection, genetic drift, and gene flow are the mechanisms that cause changes in allele frequencies over time. When one or more of these forces are acting in a population, the population violates the Hardy-Weinberg…
  • Source: https://www.nature.com/scitable/knowledge/library/natural-selection-genetic-drift-and-gene-flow-15186648/

random genetic drift / genetic drift | Learn Science at Scitable

random genetic drift / genetic drift | Learn Science at Scitable

  • Author: nature.com

  • Rating: 5⭐ (572048 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Genetic drift describes random fluctuations in the numbers of gene variants in a population. Genetic drift takes place when the occurrence of variant forms of a gene, called alleles, increases and decreases by chance over time….

  • Matching Result: Genetic drift takes place when the occurrence of variant forms of a gene, called alleles, increases and decreases by chance over time. These variations in the …

  • Intro: random genetic drift / genetic drift Genetic drift describes random fluctuations in the numbers of gene variants in a population. Genetic drift takes place when the occurrence of variant forms of a gene, called alleles, increases and decreases by chance over time. These variations in the presence of alleles are…
  • Source: https://www.nature.com/scitable/definition/genetic-drift-201/

Genetic drift (article) | Natural selection – Khan Academy

Genetic drift (article) | Natural selection - Khan Academy

  • Author: khanacademy.org

  • Rating: 5⭐ (572048 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Learn for free about math, art, computer programming, economics, physics, chemistry, biology, medicine, finance, history, and more. Khan Academy is a nonprofit with the mission of providing a free, world-class…

  • Matching Result: Genetic drift is a mechanism of evolution in which allele frequencies of a population change over generations due to chance (sampling error). Genetic drift …

  • Intro: Genetic drift (article) | Natural selection | Khan Academy If you’re seeing this message, it means we’re having trouble loading external resources on our website. If you’re behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.
  • Source: https://www.khanacademy.org/science/ap-biology/natural-selection/population-genetics/a/genetic-drift-founder-bottleneck

Mechanisms of evolution (article) | Khan Academy

Mechanisms of evolution (article) | Khan Academy

  • Author: khanacademy.org

  • Rating: 5⭐ (572048 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Learn for free about math, art, computer programming, economics, physics, chemistry, biology, medicine, finance, history, and more. Khan Academy is a nonprofit with the mission of providing a free, world-class…

  • Matching Result: For instance, one gene’s allele frequencies might be modified by both gene flow and genetic drift. For another gene, mutation may produce a new allele, which is …

  • Intro: Mechanisms of evolution (article) | Khan Academy If you’re seeing this message, it means we’re having trouble loading external resources on our website. If you’re behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.
  • Source: https://www.khanacademy.org/science/ap-biology/natural-selection/hardy-weinberg-equilibrium/a/hardy-weinberg-mechanisms-of-evolution

Mechanisms of Evolution – Environmental Science

Mechanisms of Evolution – Environmental Science

  • Author: open.maricopa.edu

  • Rating: 5⭐ (572048 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: After studying this chapter, you should be able to:

  • Matching Result: Another way a population’s allele frequencies can change is genetic drift (Figure 3), which is simply the effect of chance. Genetic drift always leads to a …

  • Intro: Mechanisms of Evolution – Environmental Science After studying this chapter, you should be able to: Describe how natural selection, mutation, genetic drift, and gene flow lead to evolution Differentiate between divergent evolution and convergent evolution Describe the definition of species and how species are identified as being different Explain the…
  • Source: https://open.maricopa.edu/environmentalscience/chapter/mechanisms-of-evolution/

Population and Evolutionary Genetics

Population and Evolutionary Genetics

  • Author: ndsu.edu

  • Rating: 5⭐ (572048 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Deriving Genotypic and Allelic Frequencies

  • Matching Result: Several factors such as mutation of alleles and migration of individuals with those new alleles will create variation in the population. Selection will then …

  • Intro: Population and Evolutionary Genetics Population Variability Deriving Genotypic and Allelic Frequencies Hardy-Weinberg Equilibrium Evolutionary Genetics Darwin’s Theory of Natural Selection Speciation Study Questions Population and Evolutiionary Genetics Overheads Population and Evolutiionary Genetics WWW Links Genetic Topics Because a genetic population is described as the sum of gene (or allelic) frequencies…
  • Source: https://www.ndsu.edu/pubweb/~mcclean/plsc431/popgen/popgen4.htm

Read More:  10 the earliest agriculture in africa south of the sahara was located where? Ideas

18.2: Formation of New Species – Biology LibreTexts

18.2: Formation of New Species - Biology LibreTexts

  • Author: bio.libretexts.org

  • Rating: 5⭐ (572048 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Although all life on earth shares various genetic similarities, only certain organisms combine genetic information by sexual reproduction and have offspring that can then successfully reproduce. Scientists call such organisms members of the same biological species.

  • Matching Result: Biologists have proposed mechanisms by which this could occur that fall into two broad categories. Allopatric speciation (allo- = “other”; – …

  • Intro: 18.2: Formation of New Species Last updated Save as PDF Page ID1917 Skills to Develop Define species and describe how species are identified as different Describe genetic variables that lead to speciation Identify prezygotic and postzygotic reproductive barriers Explain allopatric and sympatric speciation Describe adaptive radiation Although all life on…
  • Source: https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/General_Biology_1e_(OpenStax)/4%3A_Evolutionary_Processes/18%3A_Evolution_and_the_Origin_of_Species/18.2%3A_Formation_of_New_Species

Formation of New Species – Biology – UH Pressbooks

Formation of New Species – Biology - UH Pressbooks

  • Author: pressbooks-dev.oer.hawaii.edu

  • Rating: 5⭐ (572048 rating)

  • Highest Rate: 5⭐

  • Lowest Rate: 1⭐

  • Sumary: Evolution and the Origin of Species

  • Matching Result: Gene flow, the movement of alleles across the range of the species, is relatively … A postzygotic barrier occurs after zygote formation; this includes …

  • Intro: Formation of New Species – Biology Evolution and the Origin of Species OpenStaxCollege [latexpage] Learning Objectives By the end of this section, you will be able to: Define species and describe how species are identified as different Describe genetic variables that lead to speciation Identify prezygotic and postzygotic reproductive barriers…
  • Source: https://pressbooks-dev.oer.hawaii.edu/biology/chapter/formation-of-new-species/

Frequently Asked Questions About which situation occurs after the creation of a new allele?

If you have questions that need to be answered about the topic which situation occurs after the creation of a new allele?, then this section may help you solve it.

Which scenario arises following the development of a new allele group of answer options?

The gene pool becomes more diverse, which is what happens when a new allele is developed.

What procedure does a population quizlet’s new alleles?

Migration: New alleles are added to the gene pool when new members join a population, making certain genes more common. Mutations: Mutations cause changes in genes; as a result, new alleles are created and added to the population. These are the only sources of new alleles.

What procedure results in the development of novel alleles in a population?

Mutation is a change in the DNA sequence of the gene, and it is a source of new alleles in a population, increasing variation among population members. An individual with a mutated gene might have a different trait than other individuals in the population.

What happens following a speciation event?

One new species evolves following a speciation event, while the original species may remain the same or change into something else. Evolution results in a shift in allele frequency.

Which of the following happens after an allele quizlet is created?

The gene pool becomes more diverse as a result of the production of a new allele.

How does speciation take place?

The demands of a different environment or the traits of the new group’s members will distinguish the new species from their ancestors. Speciation happens when a group within a species separates from other members of its species and develops its own distinctive characteristics.

Which of the following processes results in the production of new alleles?

The entire human family is one species with the same genes; mutation creates new alleles, which are minute variations in the same gene’s DNA sequence that give each person their own unique characteristics.

What procedure results in an allele changing?

Population genetics is the branch of biology that studies allele frequencies in populations and how they change over time. Microevolution, or evolution on a small scale, is defined as a change in the frequency of gene variants, or alleles, in a population over generations.

Which method is the only place where new alleles come from?

Mutation, which is a change in the gene’s DNA sequence and can change one allele into another, but has the net effect of changing frequency, is a source of new alleles in a population.

What sequence of events must take place for speciation to take place?

A barrier (a) divides a single population into two (b); geographic isolation (c) causes genetic divergence (d); when the barrier is removed, the two populations come back into contact, and selection for increased reproductive isolation (e) occurs; if reproductive isolation is successful, speciation is…

What was the first step in the speciation process?

Two new populations must develop from one original population, and they must evolve in such a way that it is impossible for members of the two new populations to interbreed. Only then can speciation take place.

Share this post